地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 1-11.DOI: 10.13745/j.esf.sf.2025.9.68

• • 上一篇    下一篇

基础模型时代的地球科学:AlphaEarth如何重塑定量地学

成秋明1,2(), 杨一琳3, 周远志1,2, 张渊智1,4   

  1. 1.中国地质大学(北京) 地质过程与成矿预测全国重点实验室, 北京 100083
    2.中国地质大学(北京) 教育部深时数字地球前沿科学中心, 北京 100083
    3.中山大学 地球科学与工程学院, 广东 珠海 519080
    4.南京信息工程大学 海洋科学学院, 江苏 南京 210044
  • 收稿日期:2025-09-18 修回日期:2025-09-21 出版日期:2025-09-25 发布日期:2025-10-14
  • 基金资助:
    国家自然科学基金重点项目(42050103);高等学校学科创新引智计划项目(B25052);广东省珠江人才创新团队资助项目(2021ZT09H399);教育部DDE前沿科学中心资助项目(2652023001);中国地质调查局地质调查项目(DD20240206201)

Earth science in the era of foundation models: How AlphaEarth is reshaping quantitative geoscience

CHENG Qiuming1,2(), YANG Yilin3, ZHOU Yuanzhi1,2, ZHANG Yuanzhi1,4   

  1. 1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
    2. Science Frontier Center of Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
    3. School of Earth Sciences and Engineering, Sun Yat-Sen University, Zhuhai 519080, China
    4. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2025-09-18 Revised:2025-09-21 Online:2025-09-25 Published:2025-10-14

摘要:

进入21世纪以来,随着大数据和人工智能技术的快速发展与深度应用,地球科学正在经历一场深刻的变革,其特征是研究范式由定性描述转向定量分析,由对自然现象的观察转向对内在机理的深入揭示,由局部区域的研究扩展至全球尺度的综合视角,由基于经验的推断发展为依托数据与模型的智能预测。AlphaEarth Foundations(AEF)作为新一代地球空间(Geo)智能平台,通过构建统一的64维共享嵌入空间,首次实现了光学、雷达、激光等12类对地观测数据的标准化表征与无缝融合,其数据同化效率显著提高,解决了长期困扰地球科学研究的“数据孤岛”问题,同时也正促进重塑地球科学研究的范式与方法论体系,特别是在定量地球科学领域实现突破性进展。本文系统论述AEF如何通过其创新的多源数据融合架构、高维特征标注学习和可扩展计算框架,对推动数据驱动的地球科学研究进入智能化、精准化和实时化发挥作用,同时,通过资源环境领域的应用实例表明AEF的潜在应用前景和创新需求。研究表明,AEF不仅显著提升了传统地球科学问题的解决效率,更催生了多个全新的地学研究方向和方法论体系。

关键词: 大模型, 人工智能, 矿产预测, AlphaEarth, 知识图谱, 深部与覆盖区找矿

Abstract:

Since the beginning of the 21st century, advances in big data and artificial intelligence have driven a paradigm shift in the geosciences, moving the field from qualitative descriptions toward quantitative analysis, from observing phenomena to uncovering underlying mechanisms, from regional-scale investigations to global perspectives, and from experience-based inference toward data- and model-enabled intelligent prediction. AlphaEarth Foundations (AEF) is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space, enabling—for the first time—standardized representation and seamless integration of 12 distinct types of Earth observation data, including optical, radar, and lidar. This framework significantly improves data assimilation efficiency and resolves the persistent problem of “data silos” in geoscience research. AEF is helping redefine research methodologies and fostering breakthroughs, particularly in quantitative Earth system science. This paper systematically examines how AEF’s innovative architecture—featuring multi-source data fusion, high-dimensional feature representation learning, and a scalable computational framework—facilitates intelligent, precise, and real-time data-driven geoscientific research. Using case studies from resource and environmental applications, we demonstrate AEF’s broad potential and identify emerging innovation needs. Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.

Key words: large-scale models, artificial intelligence, mineral prospectivity mapping, AlphaEarth, knowledge graphs, deep and covered mineral exploration

中图分类号: