[1] |
成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25.
|
[2] |
CHENG Q M. Mathematical geosciences: local singularity analysis of nonlinear Earth systems[C]// DAYA SAGAR B, CHENG Q M, AGTERBERG F. Handbook of mathematical geosciences. Cham: Springer, 2018: 179-208.
|
[3] |
JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
|
[4] |
KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: a new paradigm for scientific discovery[J]. IEEE TKDE, 2017, 29(10): 2318-2331.
|
[5] |
HINZE W J, VON FRESE R R B, SAAD A H. Gravity and magnetic exploration:principles, practices, and applications[M]. Cambridge: Cambridge University Press, 2013.
|
[6] |
DENTITH M, MUDGE S T. Geophysics for the mineral exploration geoscientist[M]. Cambridge: Cambridge University. Press, 2014.
|
[7] |
ANDERSON S, GISLASON S. Geochemistry of the Earth’s surface[J]. Applied Geochemistry, 2011, 26: S1-S2.
|
[8] |
SMITH D B, CANNON W F, WOODRUFF L G, et al. Geochemical and mineralogical data for soils of the conterminous United States[R]. Reston: US Geological Survey Data Series, 2013, 801: 19.
|
[9] |
WULDER M A, MASEK J G, COHEN W B, et al. Opening the archive: How free data has enabled the science and monitoring promise of Landsat[J]. Remote Sensing of Environment, 2012, 122: 2-10.
|
[10] |
DRUSCH M, DEL BELLO U, CARLIER S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120(15): 25-36.
|
[11] |
GONG J, CHENG P, WANG Y. Three-dimensional modeling and application in geological exploration engineering[J]. Computers & Geosciences, 2004, 30(4): 391-404.
|
[12] |
BROWN C F, KAZMIERSKI M R, PASQUARELLA V J, et al. AlphaEarth Foundations: an embedding field model for accurate and efficient global mapping from sparse label data[EB/OL]. 2025. [2025-09-17]. https://doi.org/10.48550/arXiv.2507.22291.
|
[13] |
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
|
[14] |
CHENG Q, AGTERBERG F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1): 27-35.
|
[15] |
RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, CHICA-OLMO M, et al. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71: 804-818.
|
[16] |
KIM Y, NAKATA N. Geophysical inversion versus machine learning in inverse problems[J]. The Leading Edge, 2018, 37: 894-901.
|
[17] |
BANERJEE S, CARLIN B P, GELFAND A E. Hierarchical Modeling and analysis for spatial data[M]. Boca Raton: CRC Press, 2014.
|
[18] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[19] |
GOODCHILD M F, LI L. Replication across space and time must be weak in the social and environmental sciences[J]. PNAS, 2021, 118(35): e2015759118.
|
[20] |
CRESSIE N, WIKLE C K. Statistics for spatio-temporal data[M]. New York: Wiley, 2011.
|
[21] |
ZHAO T, WANG S, OUYANG C J, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. The Innovation, 2024, 5(5): 100691.
|
[22] |
WILKINSON M D, DUMONTIER M, AALBERSBERG I J J, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Scientific Data, 2016, 3(1): 1-9.
|
[23] |
DRURY S A. Image interpretation in geology[M]. Sydney: Allen & Unwin, 1987.
|
[24] |
HUNT G R. Spectral signatures of particulate minerals in the visible and near infrared[J]. Geophysics, 1977, 42(3): 501-513.
|
[25] |
GE Y, ZHANG Z, CHENG Q, et al. Geological mapping of basalt using stream sediment geochemical data: case study of covered areas in Jining, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2022, 232: 106888.
|
[26] |
AGTERBERG F P. Geomathematics[M]. Amsterdam: Elsevier, 1974.
|
[27] |
CARRANZA E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]//Handbook of exploration and environmental geochemistry. Amsterdam: Elsevier, 2008.
|
[28] |
FU H Z, CHENG Q M, JING L H, et al. Deep learning-based hydrothermal alteration mapping using GaoFen-5 hyperspectral data in the Duolong Ore District, Western Tibet, China[J]. Journal of Applied Remote Sensing, 2021, 15(4): 044512.
|
[29] |
SINGH A. Digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6): 989-1003.
|
[30] |
JOYCE K E, BELLISS S E, SAMSONOV S V, et al. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters[J]. Progress in Physical Geography, 2009, 33(2): 183-207.
|
[31] |
GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for Earth remote sensing[J]. Science, 1985, 228(4704): 1147-1153.
|
[32] |
GILLESPIE A R, KAHLE A B, WALKER R E. Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches[J]. Remote Sensing of Environment, 1986, 20(3): 209-235.
|
[33] |
CRACKNELL A P. Synergy in remote sensing: what’s in a pixel?[J]. International Journal of Remote Sensing, 1998, 19(11): 2025-2047.
|
[34] |
FU H, KERESZTURI G, CHENG Q, et al. Deciphering differential exhumation in the Gangdese orogen in southern Tibet using exposed porphyry alteration systems and geomorphic analysis[J]. Geological Society of America Bulletin, 2024, 136(9/10): 3795-3809.
|
[35] |
DEEPMIND. AlphaEarth Foundations helps map our planet in unprecedented detail[EB/OL]. 2025a. [2025-9-15]. https://deepmind.google/discover/blog/alphaearth-foundations-helps-map-our-planet-in-unprecedented-detail/.
|
[36] |
ASIF R. Meet AlphaEarth Foundations: Google DeepMind’s so called ‘virtual satellite’ in AI-driven planetary mapping[EB/OL]. 2025. [2025-09-15]. https://www.marktechpost.com/2025/07/31/meet-alphaearth-foundations.
|
[37] |
DEEPMIND. Dataset release:satellite embedding V1 annual (2017-2024)[EB/OL]. Google Earth Engine. 2025. [2025-09-15]. https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_SATELLITE_EMBEDDING_V1_ANNUAL.
|
[38] |
PASQUARELLA V, SCHECHTER E. AI-powered pixels: introducing Google’s satellite embedding dataset[EB/OL]. (2025-07-31)[2025-09-18]. https://medium.com/google-earth/aipowered-pixels-introducing-googles-atellite-embeddingdataset-31744c1f4650
|
[39] |
LUCÍA G D. From imagery to insight: Google AlphaEarth Foundations in CARTO[EB/OL]. 2025. [2025-09-01]. https://carto.com/blog/google-alphaearth-foundations-in-carto.
|
[40] |
BOONE A. Google’s newest AI acts like a satellite to track climate change[EB/OL]. 2025. [2025-09-17]. https://www.wired.com/story/googles-newest-ai-model-acts-like-a-satellite-to-track-climate-change.
|
[41] |
MICHAEL N. Google DeepMind says its new AI can map the entire planet with unprecedented accuracy[EB/OL]. 2025. [2025-09-17]. https://venturebeat.com/ai/google-deepmind-says-its-new-ai-can-map-the-entire-planet-with-unprecedented-accuracy.
|
[42] |
HOURIEZ L, PILARSKI S, VAHEDI B, et al. Scalable geospatial data generation using AlphaEarth Foundations model[EB/OL]. 2025. [2025-09-10]. https://arxiv.org/abs/2508.11739.
|
[43] |
CHENG Q, OBERHÄNSLI R, ZHAO M. A new international initiative for facilitating data-driven Earth science transformation[J]. Geological Society, London, Special Publications, 2020, 499(1): 225-240.
|
[44] |
CHENG Q. IUGS’ initiative on data-driven geoscience discovery[J]. Journal of Earth Science, 2021, 32(2): 468-470.
|
[45] |
OBERHNSLI R. Deep-time Digital Earth (DDE) the First IUGS Big Science Program[J]. Journal of the Geological Society of India, 2020, 95(3): 223-226.
|
[46] |
STEPHENSON M H, CHENG Q, WANG C, et al. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme[J]. Episodes, 2020, 43: 1057-1062.
|