地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 456-465.DOI: 10.13745/j.esf.sf.2025.7.18

• 地学智能计算 • 上一篇    下一篇

基于改进长短记忆神经网络的深层致密储层裂缝测井识别

张涛1,*(), 李艳萍2, 李泽凯1, 刘东成3, 王静3   

  1. 1.山东科技大学 地球科学与工程学院, 山东 青岛 266590
    2.山东地勘产业发展集团有限公司, 山东 济南 652399
    3.中石油大港油田分公司 勘探开发研究院, 天津 300280
  • 收稿日期:2024-11-12 修回日期:2025-07-10 出版日期:2025-09-25 发布日期:2025-10-14
  • 通信作者: 张涛
  • 基金资助:
    国家自然科学基金项目(41602135);山东科技大学群星计划项目(QX2022M12)

Fractures identification of deep tight reservoir with well logging based on Improved Long Short-Term Memory neural network

ZHANG Tao1,*(), LI Yanping2, LI Zekai1, LIU Dongcheng3, WANG Jing3   

  1. 1. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    2. Shandong Geological Exploration Industry Development Group Co., Ltd., Jinan 652399, China
    3. Research Institute of Exploration and Development, Dagang Oilfield Company, PetroChina, Tianjin 300280, China
  • Received:2024-11-12 Revised:2025-07-10 Online:2025-09-25 Published:2025-10-14
  • Contact: ZHANG Tao

摘要:

辽河坳陷中央凸起深层致密基岩潜山发育裂缝性油气储层,资源潜力巨大,但埋深大、岩性多样,裂缝与测井参数间映射关系复杂,裂缝测井识别多解性强,准确率低。针对以上问题,本文对长短记忆神经网络算法(LSTM)进行改进用于深层潜山地层裂缝测井识别,在双层LSTM之间增加Dropout层,通过正则化防止过拟合,引入采用高斯核函数的最小二乘支持向量机(LSSVM)将LSTM中的Dense层和用于分类的Softmax函数进行替换,直接对LSTM层所提取的特征成分进行分类预测,在保留了长短记忆神经网络算法对测井曲线的序列性学习优势基础上,有效提升了分类预测效率和准确性,避免了裂缝特征信息的丢失以及对小样本训练数据的过度拟合,增强了算法的快速收敛能力。结果显示,测试集准确率达91.56%,识别准确率高于支持向量机和标准长短记忆神经网络模型,为深层复杂岩性基岩潜山储层裂缝识别提供了高效解决方案。

关键词: 深层, 基岩潜山, 改进长短记忆神经网络, 裂缝识别

Abstract:

The deep tight bedrock buried hills in the Central Uplift of the Liaohe Depression host fractured hydrocarbon reservoirs with significant resource potential. However, challenges arise from great burial depths, diverse lithologies, complex nonlinear relationships between fractures and logging parameters, and strong multi-solution ambiguity in fracture identification via conventional logging—resulting in low prediction accuracy. To address these challenges, the modified Long Short-Term Memory (LSTM) neural network algorithm is developed for fracture identification in deep buried hill formations. In the new algorithm, the Dropout layer is inserted between dual LSTM layers and regularization is used to mitigate overfitting; the Dense layer and the Softmax function used for classification in LSTM are replaced by Least Squares Support Vector Machines (LSSVM) with Gaussian kernel functions. Classification prediction based on features extracted by the LSTM layers can be directly approached. The proposed algorithm preserves LSTM’s sequential learning advantage for logging curves while significantly improving classification efficiency and accuracy. It effectively prevents loss of fracture-feature information and overfitting on limited training samples, while accelerating algorithm convergence. Validation results demonstrate a test-set accuracy of 91.56%, outperforming both Support Vector Machine (SVM) and standard LSTM models. This provides an efficient methodology for fracture identification in deep, complex-lithology bedrock buried hill reservoirs.

Key words: deep layer, base rock buried hill, Improved Long Short-Term Memory (LSTM) neural network, fracture identification

中图分类号: