地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 59-72.DOI: 10.13745/j.esf.sf.2021.9.23
收稿日期:
2020-09-06
修回日期:
2020-12-15
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
刘素美
作者简介:
徐昭萌(1989—),男,博士后,主要从事海洋生物地球化学研究工作。E-mail: xzm@ouc.edu.cn
基金资助:
XU Zhaomeng1,2(), LIU Sumei1,2,*(
)
Received:
2020-09-06
Revised:
2020-12-15
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Sumei
摘要:
全球变暖和人为活动不断加剧海洋低氧环境发生的频率和范围,低氧对全球海洋底栖生物群落结构造成重大影响。底栖有孔虫能够广泛适应生存在各种海洋低氧环境中,是极少数能适应低氧环境的真核生物之一,底栖有孔虫对低氧环境的响应及适应机制研究是海洋研究领域的前沿和热点话题,至今仍存在很多谜团。本文总结了不同海洋低氧环境活体底栖有孔虫分布特征、活体底栖有孔虫对人为诱导低氧环境的响应、低氧环境下底栖有孔虫外壳化学组成特征、低氧环境下底栖有孔虫的生存机理,期望为后续推进海洋低氧环境下底栖有孔虫相关研究进一步开展提供参考和借鉴。底栖有孔虫作为古海洋环境重建的重要工具,对我们了解全球海洋低氧环境的历史演化进程具有非常重要的意义。展望未来我们需要进一步加强有孔虫细胞生理学和分子生物学对低氧环境的适应机制研究,从系统发生学上认识真核生物对低氧环境适应的历史演化进程,为利用有孔虫作为工具更好地重建和预测海洋低氧环境变化提供理论依据。
中图分类号:
徐昭萌, 刘素美. 海洋低氧环境底栖有孔虫研究进展[J]. 地学前缘, 2022, 29(5): 59-72.
XU Zhaomeng, LIU Sumei. Benthic foraminifera in marine hypoxic environment: A review of recent research advances[J]. Earth Science Frontiers, 2022, 29(5): 59-72.
图3 有孔虫细胞内储存和利用硝酸盐机制(据文献[12⇓-14,16⇓-18,43,45,47,52,55,79-80,106-107]) a—有孔虫通过外壳壳孔和转运蛋白主动吸收硝酸盐;b—有孔虫细胞内硝酸盐被富集储存在液泡内;c—有孔虫通过细胞器线粒体进行反硝化作用;d—有孔虫细胞内共生体进行反硝化作用;e—有孔虫体内的硝酸盐被内共生体同化吸收转化为有机氮
Fig.3 Nitrate storage and utilization mechanism in foraminifera cells. Adapted from [12⇓-14,16⇓-18,43,45,47,52,55,79-80,106-107].
[1] |
DEUTSCH C, BRIX H, ITO T, et al. Climate-forced variability of ocean hypoxia[J]. Science, 2011, 333(6040): 336-339.
DOI URL |
[2] | VAQUER-SUNYER R, DUARTE C M. Thresholds of hypoxia for marine biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15452-15457. |
[3] |
WARD B B, DEVOL A H, RICH J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J]. Nature, 2009, 461(7260): 78-81.
DOI URL |
[4] |
ZHANG J, GILBERT D, GOODAY A J, et al. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development[J]. Biogeosciences, 2010, 7(5): 1443-1467.
DOI URL |
[5] | REITNER J, THIEL V. Encyclopedia of geobiology[M]. Berlin: Springer Netherlands, 2011. |
[6] | KOHO K A, PIÑA-OCHOA E. Benthic foraminifera: inhabitants of low-oxygen environments[M]// Cellular origin, life in extreme habitats and astrobiology. Dordrecht: Springer Netherlands, 2011: 249-285. |
[7] |
GOODAY A J, NOMAKI H, KITAZATO H. Modern deep-sea benthic foraminifera: a brief review of their morphology-based biodiversity and trophic diversity[J]. Geological Society, London, Special Publications, 2008, 303(1): 97-119.
DOI URL |
[8] |
WOULDS C, COWIE G L, LEVIN L A, et al. Oxygen as a control on sea floor biological communities and their roles in sedimentary carbon cycling[J]. Limnology and Oceanography, 2007, 52(4): 1698-1709.
DOI URL |
[9] |
SUHR S B, POND D W. Antarctic benthic foraminifera facilitate rapid cycling of phytoplankton-derived organic carbon[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(8/9/10): 895-902.
DOI URL |
[10] |
NOMAKI H, OHKOUCHI N, HEINZ P, et al. Degradation of algal lipids by deep-sea benthic foraminifera: an in situ tracer experiment[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(9): 1488-1503.
DOI URL |
[11] | GOODAY A J, LEVIN L A, LINKE P, et al. The role of benthic foraminifera in deep-sea food webs and carbon cycling[M]// ROWEG T, PARIENTEV. Deep-sea food chains and the global carbon cycle. Berlin: Springer, 1992: 63-91. |
[12] |
RISGAARD-PETERSEN N, LANGEZAAL A M, INGVARDSEN S, et al. Evidence for complete denitrification in a benthic foraminifer[J]. Nature, 2006, 443(7107): 93-96.
DOI URL |
[13] | PIÑA-OCHOA E, HØGSLUND S, GESLIN E, et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 1148-1153. |
[14] | BERNHARD J M, CASCIOTTI K L, MCILVIN M R, et al. Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117: G03022. |
[15] | KAMP A, HØGSLUND S, RISGAARD-PETERSEN N, et al. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes[J]. Frontiers in Microbiology, 2015, 6: 1492. |
[16] | GLOCK N, ROY A S, ROMERO D, et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(8): 2860-2865. |
[17] | STEIN L Y. Eukaryotic evolution: an ancient breath of nitrate[J]. Current Biology, 2018, 28(16): R875-R877. |
[18] |
ORSI W D, MORARD R, VUILLEMIN A, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor[J]. The ISME Journal, 2020, 14(10): 2580-2594.
DOI URL |
[19] |
KITAZATO H, SHIRAYAMA Y, NAKATSUKA T, et al. Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from “Project Sagami 1996-1999”[J]. Marine Micropaleontology, 2000, 40(3): 135-149.
DOI URL |
[20] |
KITAZATO H, NAKATSUKA T, SHIMANAGA M, et al. Long-term monitoring of the sedimentary processes in the central part of Sagami Bay, Japan: rationale, logistics and overview of results[J]. Progress in Oceanography, 2003, 57(1): 3-16.
DOI URL |
[21] |
GOODAY A J, BETT B J, ESCOBAR E, et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones[J]. Marine Ecology, 2010, 31(1): 125-147.
DOI URL |
[22] |
LEVIN L A, EKAU W, GOODAY A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063-2098.
DOI URL |
[23] |
CORLISS B H. Microhabitats of benthic foraminifera within deep-sea sediments[J]. Nature, 1985, 314(6010): 435-438.
DOI URL |
[24] |
GOODAY A J. Meiofaunal foraminiferans from the bathyal porcupine seabight (Northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment[J]. Deep Sea Research Part A Oceanographic Research Papers, 1986, 33(10): 1345-1373.
DOI URL |
[25] |
GLUD R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243-289.
DOI URL |
[26] |
GLUD R N, WENZHÖFER F, MIDDELBOE M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
DOI URL |
[27] |
JORISSEN F J, BUZAS M A, CULVER S J, et al. Vertical distribution of living benthic foraminifera in submarine canyons off New Jersey[J]. The Journal of Foraminiferal Research, 1994, 24(1): 28-36.
DOI URL |
[28] |
JORISSEN F J, WITTLING I, PEYPOUQUET J P, et al. Live benthic foraminiferal faunas off Cape Blanc, NW-Africa: community structure and microhabitats[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 2157-2188.
DOI URL |
[29] |
JORISSEN F J, DE STIGTER H C, WIDMARK J G V. A conceptual model explaining benthic foraminiferal microhabitats[J]. Marine Micropaleontology, 1995, 26(1/2/3/4): 3-15.
DOI URL |
[30] |
LANGLET D, GESLIN E, BAAL C, et al. Foraminiferal survival after long-term in situ experimentally induced anoxia[J]. Biogeosciences, 2013, 10(11): 7463-7480.
DOI URL |
[31] | KITAZATO H, BERNHARD J M. Approaches to Study Living Foraminifera[M]. Tokyo: Springer Japan, 2014. |
[32] |
FONTANIER C, JORISSEN F J, CHAILLOU G, et al. Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(4): 457-494.
DOI URL |
[33] |
FONTANIER C, JORISSEN F J, CHAILLOU G, et al. Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of Biscay: faunal response to focusing of refractory organic matter[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(7): 1189-1227.
DOI URL |
[34] |
MOJTAHID M, JORISSEN F, LANSARD B, et al. Microhabitat selection of benthic foraminifera in sediments off the Rhone River mouth (nw Mediterranean)[J]. The Journal of Foraminiferal Research, 2010, 40(3): 231-246.
DOI URL |
[35] |
KOHO K A, GARCÍA R, DE STIGTER H C, et al. Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: a case study from Lisbon-Setúbal Canyon (southern Portugal)[J]. Progress in Oceanography, 2008, 79(1): 55-82.
DOI URL |
[36] |
DUCHEMIN G. Living benthic foraminifera from “la grande vasiere”, French Atlantic continental shelf: faunal composition and microhabitats[J]. The Journal of Foraminiferal Research, 2005, 35(3): 198-218.
DOI URL |
[37] |
LANGEZAAL A M, JORISSEN F J, BRAUN B, et al. The influence of seasonal processes on geochemical profiles and foraminiferal assemblages on the outer shelf of the Bay of Biscay[J]. Continental Shelf Research, 2006, 26(15): 1730-1755.
DOI URL |
[38] |
KOHO K A, KOUWENHOVEN T J, DE STIGTER H C, et al. Benthic foraminifera in the Nazaré Canyon, Portuguese continental margin: sedimentary environments and disturbance[J]. Marine Micropaleontology, 2007, 66(1): 27-51.
DOI URL |
[39] |
XU Z, LIU S, XIANG R, et al. Live benthic foraminifera in the Yellow Sea and the East China Sea: vertical distribution, nitrate storage, and potential denitrification[J]. Marine Ecology Progress Series, 2017, 571: 65-81.
DOI URL |
[40] |
SCHONFELD J. Benthic foraminifera and pore-water oxygen profiles: a re-assessment of species boundary conditions at the western Iberian margin[J]. The Journal of Foraminiferal Research, 2001, 31(2): 86-107.
DOI URL |
[41] |
FONTANIER C, JORISSEN F J, LICARI L, et al. Live benthic foraminiferal faunas from the bay of Biscay: faunal density, composition, and microhabitats[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(4): 751-785.
DOI URL |
[42] |
SCHMIEDL G, DE BOVÉE F, BUSCAIL R, et al. Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea[J]. Marine Micropaleontology, 2000, 40(3): 167-188.
DOI URL |
[43] |
PIÑA-OCHOA E, KOHO K A, GESLIN E, et al. Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification[J]. Marine Ecology Progress Series, 2010, 417: 39-49.
DOI URL |
[44] |
KOHO K A, PIÑA-OCHOA E, GESLIN E, et al. Vertical migration, nitrate uptake and denitrification: survival mechanisms of foraminifers (Globobulimina turgida) under low oxygen conditions[J]. FEMS Microbiology Ecology, 2011, 75(2): 273-283.
DOI URL |
[45] |
PROKOPENKO M G, SIGMAN D M, BERELSON W M, et al. Denitrification in anoxic sediments supported by biological nitrate transport[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7180-7199.
DOI URL |
[46] |
PAULMIER A, RUIZ-PINO D. Oxygen minimum zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3/4): 113-128.
DOI URL |
[47] |
GLOCK N, SCHÖNFELD J, EISENHAUER A, et al. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone[J]. Biogeosciences, 2013, 10(7): 4767-4783.
DOI URL |
[48] |
CARDICH J, GUTIÉRREZ D, ROMERO D, et al. Calcareous benthic foraminifera from the upper central Peruvian margin: control of the assemblage by pore water redox and sedimentary organic matter[J]. Marine Ecology Progress Series, 2015, 535: 63-87.
DOI URL |
[49] |
KOHO K A, DE NOOIJER L J, REICHART G J. Combining benthic foraminiferal ecology and shell Mn/Ca to deconvolve past bottom water oxygenation and paleoproductivity[J]. Geochimica et Cosmochimica Acta, 2015, 165: 294-306.
DOI URL |
[50] |
HALFAR J. Modern warm-temperate and subtropical shallow-water benthic foraminifera of the southern gulf of California, Mexico[J]. The Journal of Foraminiferal Research, 2003, 33(4): 309-329.
DOI URL |
[51] | TAPIA R, LANGE C B, MARCHANT M. Living (stained) calcareous benthic foraminifera from recent sediments off Concepción, central-southern Chile (-36° S)[J]. Revista Chilena De Historia Natural, 2008, 81(3): 403-416. |
[52] |
HØGSLUND S, REVSBECH N P, CEDHAGEN T, et al. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile[J]. Journal of Experimental Marine Biology and Ecology, 2008, 359(2): 85-91.
DOI URL |
[53] |
SCHUMACHER S, JORISSEN F J, DISSARD D, et al. Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea)[J]. Marine Micropaleontology, 2007, 62(1): 45-73.
DOI URL |
[54] |
ERBACHER J, NELSKAMP S. Comparison of benthic foraminifera inside and outside a sulphur-oxidizing bacterial mat from the present oxygen-minimum zone off Pakistan (NE Arabian Sea)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(5): 751-775.
DOI URL |
[55] |
GLUD R N, THAMDRUP B, STAHL H, et al. Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan)[J]. Limnology and Oceanography, 2009, 54(3): 723-734.
DOI URL |
[56] |
OHGA T, KITAZATO H. Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan)[J]. Terra Nova, 1997, 9(1): 33-37.
DOI URL |
[57] |
KITAZATO H. Recolonization by deep-sea benthic foraminifera: possible substrate preferences[J]. Marine Micropaleontology, 1995, 26(1/2/3/4): 65-74.
DOI URL |
[58] | BERNHARD J M, REIMERS C E. Benthic foraminiferal population fluctuations related to anoxia: Santa Barbara Basin[J]. Biogeochemistry, 1991, 15(2): 127-149. |
[59] |
BERNHARD J M, ALVE E. Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from drammensfjord (Norway): response to anoxia[J]. Marine Micropaleontology, 1996, 28(1): 5-17.
DOI URL |
[60] | BERNHARD J M, SEN GUPTA B K. Foraminifera of oxygen-depleted environments[M]// Modern Foraminifera. Berlin: Springer, 1999: 201-216. |
[61] |
BERNHARD J M, BUCK K R, FARMER M A, et al. The Santa Barbara Basin is a symbiosis oasis[J]. Nature, 2000, 403(6765): 77-80.
DOI URL |
[62] |
DEAN W E, PIPER D Z, PETERSON L C. Molybdenum accumulation in Cariaco Basin sediment over the past 24 k.y.: a record of water-column anoxia and climate[J]. Geology, 1999, 27(6): 507.
DOI URL |
[63] |
BERNHARD J M. Potential symbionts in bathyal foraminifera[J]. Science, 2003, 299(5608): 861.
DOI URL |
[64] |
GRÉGOIRE M, SOETAERT K. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: a biogeochemical model of the whole water column coupling the oxic and anoxic parts[J]. Ecological Modelling, 2010, 221(19): 2287-2301.
DOI URL |
[65] |
SERGEEVA N G, ANIKEEVA O V, GOODAY A J. Soft-shelled, monothalamous foraminifera from the oxic/anoxic interface (NW Black Sea)[J]. Micropaleontology, 2010, 56(3-4): 393-407.
DOI URL |
[66] |
HELLY J J, LEVIN L A. Global distribution of naturally occurring marine hypoxia on continental margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(9): 1159-1168.
DOI URL |
[67] |
GUSTAFSSON M, NORDBERG K. Living (stained) benthic foraminifera and their response to the seasonal hydrographic cycle, periodic hypoxia and to primary production in havstens fjord on the Swedish west coast[J]. Estuarine, Coastal and Shelf Science, 2000, 51(6): 743-761.
DOI URL |
[68] |
NORDBERG K, FILIPSSON H L, LINNÉ P, et al. Stable oxygen and carbon isotope information on the establishment of a new, opportunistic foraminiferal fauna in a Swedish Skagerrak fjord basin, in 1979/1980[J]. Marine Micropaleontology, 2009, 73(1/2): 117-128.
DOI URL |
[69] |
PLATON E, SEN GUPTA B K, RABALAIS N N, et al. Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record[J]. Marine Micropaleontology, 2005, 54(3/4): 263-283.
DOI URL |
[70] |
OSTERMAN L E, POORE R Z, SWARZENSKI P W, et al. Reconstructing a 180 yr record of natural and anthropogenic induced low-oxygen conditions from Louisiana continental shelf sediments[J]. Geology, 2005, 33(4): 329-332.
DOI URL |
[71] |
BLACKWELDER P, HOOD T, ALVAREZ-ZARIKIAN C, et al. Benthic foraminifera from the NECOP study area impacted by the Mississippi River plume and seasonal hypoxia[J]. Quaternary International, 1996, 31: 19-36.
DOI URL |
[72] | OSTERMAN L E. Benthic foraminifers from the continental shelf and slope of the Gulf of Mexico: an indicator of shelf hypoxia[J]. Estuarine, Coastal and Shelf Science, 2003, 58(1): 17-35. |
[73] |
BRUNNER C A, BEALL J M, BENTLEY S J. Hypoxia hotspots in the Mississippi Bight[J]. The Journal of Foraminiferal Research, 2006, 36(2): 95-107.
DOI URL |
[74] |
TOMASINO M G. Is it feasible to predict “slime blooms” or “mucilage” in the northern Adriatic Sea?[J]. Ecological Modelling, 1996, 84(1/2/3): 189-198.
DOI URL |
[75] |
DEGOBBIS D, PRECALI R, IVANCIC I, et al. Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication[J]. International Journal of Environment and Pollution, 2000, 13(1/2/3/4/5/6): 495-533.
DOI URL |
[76] |
DUIJNSTEE I, DE LUGT I, VONK NOORDEGRAAF H, et al. Temporal variability of foraminiferal densities in the northern Adriatic Sea[J]. Marine Micropaleontology, 2004, 50(1/2): 125-148.
DOI URL |
[77] |
LI X X, BIANCHI T S, YANG Z S, et al. Historical trends of hypoxia in Changjiang River Estuary: applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3/4): 57-68.
DOI URL |
[78] |
WANG F F, LIU J, QIU J D, et al. Historical evolution of hypoxia in the East China Sea off the Changjiang (Yangtze River) estuary for the last -13, 000 years: evidence from the benthic foraminiferal community[J]. Continental Shelf Research, 2014, 90: 151-162.
DOI URL |
[79] | NOMAKI H, BERNHARD J M, ISHIDA A, et al. Intracellular isotope localization in ammonia sp. (foraminifera) of oxygen-depleted environments: results of nitrate and sulfate labeling experiments[J]. Frontiers in Microbiology, 2016, 7: 163. |
[80] |
WOEHLE C, ROY A S, GLOCK N, et al. A novel eukaryotic denitrification pathway in foraminifera[J]. Current Biology, 2018, 28(16): 2536-2543.
DOI URL |
[81] |
MOODLEY L, HESS C. Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations[J]. The Biological Bulletin, 1992, 183(1): 94-98.
DOI URL |
[82] |
ALVE E, BERNHARD J M. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm[J]. Marine Ecology Progress Series, 1995, 116(1/2/3): 137-151.
DOI URL |
[83] |
ERNST S, VAN DER ZWAAN B. Effects of experimentally induced raised levels of organic flux and oxygen depletion on a continental slope benthic foraminiferal community[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1709-1739.
DOI URL |
[84] |
PUCCI F, GESLIN E, BARRAS C, et al. Survival of benthic foraminifera under hypoxic conditions: results of an experimental study using the Cell Tracker Green method[J]. Marine Pollution Bulletin, 2009, 59(8/9/10/11/12): 336-351.
DOI URL |
[85] |
MOODLEY L, VAN DER ZWAAN G J, HERMAN P, et al. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina)[J]. Marine Ecology Progress Series, 1997, 158: 151-163.
DOI URL |
[86] |
MOODLEY L, VAN DER ZWAAN G J, RUTTEN G M W, et al. Subsurface activity of benthic foraminifera in relation to porewater oxygen content: laboratory experiments[J]. Marine Micropaleontology, 1998, 34(1/2): 91-106.
DOI URL |
[87] | CARDICH J, MORALES M, QUIPÚZCOA L, et al. Benthic foraminiferal communities and microhabitat selection on the continental shelf off central peru[M]// ALTENBACHA V, BERNHARDJ M, SECKBACHJ. Anoxia. Dordrecht: Springer, 2012: 323-340. |
[88] | LEITER C, ALTENBACH A V. Benthic foraminifera from the diatomaceous mud belt off Namibia: characteristic species for severe anoxia[J]. Palaeontologia Electronica, 2010, 13(2): 19. |
[89] |
GESLIN E, HEINZ P, JORISSEN F, et al. Migratory responses of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations[J]. Marine Micropaleontology, 2004, 53(3/4): 227-243.
DOI URL |
[90] |
DUIJNSTEE I, ERNST S R, VAN DER ZWAAN G J. Effect of anoxia on the vertical migration of benthic foraminifera[J]. Marine Ecology Progress Series, 2003, 246: 85-94.
DOI URL |
[91] | KOHO K A. The dynamic balance between food abundance and habitat instability: benthic foraminifera of Portuguese margin canyons[D]. Utrecht: Utrecht University, 2008. |
[92] |
NOMAKI H, HEINZ P, HEMLEBEN C, et al. Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments[J]. The Journal of Foraminiferal Research, 2005, 35(2): 103-113.
DOI URL |
[93] |
LANGLET D, BAAL C, GESLIN E, et al. Foraminiferal species responses to in situ, experimentally induced anoxia in the Adriatic Sea[J]. Biogeosciences, 2014, 11(7): 1775-1797.
DOI URL |
[94] |
EREZ J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149.
DOI URL |
[95] |
ELDERFIELD H, YU J, ANAND P, et al. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis[J]. Earth and Planetary Science Letters, 2006, 250(3/4): 633-649.
DOI URL |
[96] |
MARCHITTO T M JR, CURRY W B, OPPO D W. Zinc concentrations in benthic foraminifera reflect seawater chemistry[J]. Paleoceanography, 2000, 15(3): 299-306.
DOI URL |
[97] | CAME R E, OPPO D W, CURRY W B. Atlantic Ocean circulation during the Younger Dryas: insights from a new Cd/Ca record from the western subtropical South Atlantic[J]. Paleoceanography, 2003, 18(4): 1086. |
[98] |
RAE J W B, FOSTER G L, SCHMIDT D N, et al. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system[J]. Earth and Planetary Science Letters, 2011, 302(3/4): 403-413.
DOI URL |
[99] | HALL J M, CHAN L H. Ba/Ca in Neogloboquadrina pachyderma as an indicator of deglacial meltwater discharge into the western Arctic Ocean[J]. Paleoceanography, 2004, 19(1): PA1017. |
[100] |
GLOCK N, EISENHUAUER A, LIEBETRAU V, et al. EMP and SIMS studies on Mn/Ca and Fe/Ca systematics in benthic foraminifera from the Peruvian OMZ: a contribution to the identification of potential redox proxies and the impact of cleaning protocols[J]. Biogeosciences, 2012, 9(1): 341-359.
DOI URL |
[101] |
KOHO K A, DE NOOIJER L J, FONTANIER C, et al. Benthic foraminiferal Mn/Ca ratios reflect microhabitat preferences[J]. Biogeosciences, 2017, 14(12): 3067-3082.
DOI URL |
[102] |
FONTANIER C, MACKENSEN A, JORISSEN F J, et al. Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: microhabitat impact and seasonal variability[J]. Marine Micropaleontology, 2006, 58(3): 159-183.
DOI URL |
[103] |
FONTANIER C, JORISSEN F J, MICHEL E, et al. Stable oxygen and carbon isotopes of live (stained) benthic foraminifera from cap-ferret canyon (bay of Biscay)[J]. The Journal of Foraminiferal Research, 2008, 38(1): 39-51.
DOI URL |
[104] |
MCCORKLE D C, EMERSON S R. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1169-1178.
DOI URL |
[105] |
SCHMIEDL G, PFEILSTICKER M, HEMLEBEN C, et al. Environmental and biological effects on the stable isotope composition of recent deep-sea benthic foraminifera from the western Mediterranean Sea[J]. Marine Micropaleontology, 2004, 51(1/2): 129-152.
DOI URL |
[106] |
NOMAKI H, CHIKARAISHI Y, TSUCHIYA M, et al. Variation in the nitrogen isotopic composition of amino acids in benthic foraminifera: implications for their adaptation to oxygen-depleted environments[J]. Limnology and Oceanography, 2015, 60(6): 1906-1916.
DOI URL |
[107] |
LEKIEFFRE C, SPANGENBERG J E, MABILLEAU G, et al. Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida)[J]. PLoS One, 2017, 12(5): e0177604.
DOI URL |
[108] |
NOMAKI H, CHIKARAISHI Y, TSUCHIYA M, et al. Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions[J]. Limnology and Oceanography, 2014, 59(6): 1879-1888.
DOI URL |
[109] |
BERNHARD J M, EDGCOMB V P, CASCIOTTI K L, et al. Denitrification likely catalyzed by endobionts in an allogromiid foraminifer[J]. The ISME Journal, 2012, 6(5): 951-960.
DOI URL |
[110] |
BERNHARD J M, BOWSER S S. Peroxisome proliferation in Foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure?[J]. The Journal of Eukaryotic Microbiology, 2008, 55(3): 135-144.
DOI URL |
[111] |
GRZYMSKI J, SCHOFIELD O M, FALKOWSKI P G, et al. The function of plastids in the deep-sea benthic foraminifer, Nonionella stella[J]. Limnology and Oceanography, 2002, 47(6): 1569-1580.
DOI URL |
[112] |
CEDHAGEN T. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan nonionellina labradorica[J]. Ophelia, 1991, 33(1): 17-30.
DOI URL |
[113] |
KOHO K A, LEKIEFFRE C, NOMAKI H, et al. Changes in ultrastructural features of the foraminifera Ammonia spp. in response to anoxic conditions: field and laboratory observations[J]. Marine Micropaleontology, 2018, 138: 72-82.
DOI URL |
[114] |
SEN GUPTA B K, MACHAIN-CASTILLO M L. Benthic foraminifera in oxygen-poor habitats[J]. Marine Micropaleontology, 1993, 20(3/4): 183-201.
DOI URL |
[115] |
KAIHO K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22(8): 719-722.
DOI URL |
[116] |
LEUTENEGGER S, HANSEN H J. Ultrastructural and radiotracer studies of pore function in foraminifera[J]. Marine Biology, 1979, 54(1): 11-16.
DOI URL |
[117] | BERNHARD J M, GOLDSTEIN S T, BOWSER S S. An ectobiont-bearing foraminiferan, Bolivina Pacifica, that inhabits microxic pore waters: cell-biological and paleoceanographic insights[J]. Environmental Microbiology, 2010, 12(8): 2107-2119. |
[118] |
GLOCK N, EISENHAUER A, MILKER Y, et al. Environmental influences on the pore density of bolivina spissa (cushman)[J]. The Journal of Foraminiferal Research, 2011, 41(1): 22-32.
DOI URL |
[119] |
GLOCK N, ERDEM Z, WALLMANN K, et al. Coupling of oceanic carbon and nitrogen facilitates spatially resolved quantitative reconstruction of nitrate inventories[J]. Nature Communications, 2018, 9: 1217.
DOI URL |
[1] | 涂春霖, 和成忠, 马一奇, 尹林虎, 陶兰初, 杨明花. 珠江流域沉积物重金属污染特征、生态风险及来源解析[J]. 地学前缘, 2024, 31(3): 410-419. |
[2] | 刘海, 魏伟, 宋阳, 潘杨, 李迎春. 霍邱县城湖泊沉积物重金属污染特征、潜在生态风险及来源[J]. 地学前缘, 2024, 31(3): 420-431. |
[3] | 张毅恒, 张涛, 雍媛媛, 鱼驰洋, 肖巨月, 何凯悦, 王邓, 王星, 王宾, 杨晓光, 韩健. 滨海海底边界层对底栖微体化石仿真模拟的影响[J]. 地学前缘, 2024, 31(2): 410-422. |
[4] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[5] | 刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95. |
[6] | 周尚, 徐继尚, 刘勇, 李广雪, 李安龙, 曹立华, 翟科, 徐继正, 权永峥. 西太暖池区生物组分对海底表层沉积物物理力学性质的影响[J]. 地学前缘, 2022, 29(5): 119-132. |
[7] | 陈天, 贾永刚, 刘涛, 刘晓磊, 单红仙, 孙中强. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J]. 地学前缘, 2022, 29(5): 229-245. |
[8] | 张玉叶, 何江涛, 邓璐, 邹华, 张金刚, 杨美萍. 洛美沙星和诺氟沙星对水中生物反硝化过程的影响模拟试验[J]. 地学前缘, 2022, 29(5): 497-507. |
[9] | 郑成, 孙承君, 金红, 黄玉环, 岳新安, 杨桂朋, 丁海兵. 雅浦海沟北部深渊和超深渊沉积物的物质组成、来源和形成过程研究[J]. 地学前缘, 2022, 29(5): 73-87. |
[10] | 邹建军, 宗娴, 朱爱美, 豆汝席, 林锦辉, 冯旭光, 董智, Sergey A. GORBARENKO, 郑立伟, 石学法. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123-135. |
[11] | 张玉婷, 段丽琴, 宋金明, 张乃星, 尹美玲, 李学刚, 袁华茂. 长江口沉积物-水界面砷的迁移转化机制与微生物调控分析[J]. 地学前缘, 2022, 29(4): 144-155. |
[12] | 冯铄, 刘志飞, Penjai SOMPONGCHAIYAKUL, 林宝治, Martin G. WIESNER. 泰国湾表层沉积物陆源碎屑的粒度特征及其展现的沉积动力环境[J]. 地学前缘, 2022, 29(4): 211-220. |
[13] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[14] | 迟明慧, 秦延文, 杨晨晨, 温泉, 孙宁, 竹怀林, 张雷. 潮白河中游沉积物氮磷和有机质分布特征及评价[J]. 地学前缘, 2022, 29(4): 448-454. |
[15] | 窦衍光, 李清, 吴永华, 赵京涛, 孙呈慧, 蔡峰, 陈晓辉, 张勇, 范佳慧, 石学法. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义[J]. 地学前缘, 2022, 29(4): 84-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||