[1] |
瞿洪宝, 郑彦鹏, 刘晨光, 等. 晚始新世以来雅浦海沟-岛弧构造演化模式[J]. 海洋科学进展, 2017, 35(2): 249-257.
|
[2] |
DING H, SUN C. Towards the understanding from sea surface to hadal zone: a multidisciplinary study of the Yap Trench[J]. Journal of Oceanology and Limnology, 2020, 38(3): 591-592.
DOI
URL
|
[3] |
KOBAYASHI K. Origin of the Palau and Yap Trench-arc systems[J]. Geophysical Journal International, 2004, 157(3): 1303-1315.
DOI
URL
|
[4] |
FUJIWARA T, TAMURA C, NISHIZAWA A, et al. Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1/2): 69-86.
DOI
URL
|
[5] |
SATO T, KASAHARA J, KATAO H, et al. Seismic observations at the Yap Islands and the northern Yap Trench[J]. Tectonophysics, 1997, 271(3/4): 285-294.
DOI
URL
|
[6] |
KIMURA G, KOGA K, FUJIOKA K. Deformed soft sediments at the junction between the Mariana and Yap Trenches[J]. Journal of Structural Geology, 1989, 11(4): 463-472.
DOI
URL
|
[7] |
BECCALUVA L, SERRI G, DOSTAL J. Geochemistry of volcanicrocks from the Mariana, Yap and Palau Trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system[M]// Developments in Geotectonics. Amsterdam: Elsevier, 1986: 481-508.
|
[8] |
YANG Y, WU S, GAO J, et al. Geology of the Yap Trench: new observations from a transect near 10°N from manned submersible Jiaolong[J]. International Geology Review, 2018, 60(16): 1941-1953.
DOI
URL
|
[9] |
CHEN L, TANG L, LI X, et al. Geochemistry of peridotites from the Yap Trench, western Pacific: implications for subduction zone mantle evolution[J]. International Geology Review, 2019, 61(9): 1037-1051.
DOI
URL
|
[10] |
LIU Y, LIU X, LV X, et al. Watermass properties and deep currents in the northern Yap Trench observed by the Submersible Jiaolong system[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 139: 27-42.
DOI
URL
|
[11] |
DONG D, ZHANG Z, BAI Y, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction[J]. Tectonophysics, 2018, 722: 410-421.
DOI
URL
|
[12] |
XU W, GAO Y H, GONG L F, et al. Fungal diversity in the deep-sea hadal sediments of the Yap Trench by cultivation and high throughput sequencing methods based on ITS rRNA gene[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 145: 125-136.
DOI
URL
|
[13] |
岳新安, 闫艺心, 丁海兵, 等. 雅浦海沟沉积物的生物地球化学特征及其海洋学意义[J]. 中国海洋大学学报(自然科学版), 2018, 48(3): 88-96.
|
[14] |
HUANG Y, SUN C, YANG G, et al. Geochemical characteristics of hadal sediment in the northern Yap Trench[J]. Journal of Oceanology and Limnology, 2020, 38(3): 650-664.
DOI
URL
|
[15] |
YANG J, CUI Z, DADA O A, et al. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, Northwest Pacific Ocean[J]. Marine Pollution Bulletin, 2018, 135: 1035-1041.
DOI
URL
|
[16] |
TEN BRINK U S, BARKAN R, ANDREWS B D, et al. Size distributions and failure initiation of submarine and subaerial landslides[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 31-42.
DOI
URL
|
[17] |
SCHUETH J D, BRALOWER T J. The relationship between environmental change and the extinction of the nanoplankton Discoaster in the early Pleistocene[J]. Paleoceanography, 2015, 30(7): 863-876.
DOI
URL
|
[18] |
张金鹏, 邓希光, 朱本铎, 等. 西太平洋挑战者深渊海底浅表层的硅藻软泥[J]. 微体古生物学报, 2016, 33(1): 1-8.
|
[19] |
熊志方, 李铁刚, 翟滨, 等. 低纬度西太平洋末次冰期Ethmodiscus rex 硅藻席粘土矿物特征及形成机制启示[J]. 地球科学: 中国地质大学报, 2010, 35(4): 551-562.
|
[20] |
许东禹, 金庆焕, 梁德华. 太平洋中部多金属结核及其形成环境[M]. 北京: 地质出版社, 1994: 83-85.
|
[21] |
LANDING W M, BRULAND K W. Manganese in the north Pacific[J]. Earth and Planetary Science Letters, 1980, 49(1): 45-56.
DOI
URL
|
[22] |
GOLDBERG E D, ARRHENIUS G O S. Chemistry of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1958, 13(2/3): 153-212.
DOI
URL
|
[23] |
DENG X, YI L, PATERSON G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the Middle Pleistocene: potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2016, 58(1): 49-57.
DOI
URL
|
[24] |
MOOREW S, STAKES D. Ages of barite-sulfide chimneys from the Mariana trough[J]. Earth and Planetary Science Letters, 1990, 100(1/2/3): 265-274.
DOI
URL
|
[25] |
MARTIN E E, MACDOUGALL J D, HERBERT T D, et al. Strontium and neodymium isotopic analyses of marine barite separates[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1353-1361.
DOI
URL
|
[26] |
杨锐, 李国胜, 张洪瑞. 中太平洋CC区第四系沉积物地球化学特征及物源[J]. 物探与化探, 2007, 31(4): 293-297.
|
[27] |
MÜELLER P J, MANGINI A. Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230Th and 231Pa[J]. Earth and Planetary Science Letters 1980, 51(1): 94-114.
DOI
URL
|
[28] |
ICHINO M C, CLARK M R, DRAZEN J C, et al. The distribution of benthic biomass in hadal trenches:a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 100: 21-33.
DOI
URL
|
[29] |
SNIDERMAN J M K, HELLSTROM J, WOODHEAD J D, et al. Vegetation and climate change in Southwestern Australia during thelast glacial maximum[J]. Geophysical Research Letters, 2019, 46(3): 1709-1720.
DOI
URL
|
[30] |
LI D, ZHAO J, YAO P, et al. Spatial heterogeneity of organic carbon cycling in sediments of the northern Yap Trench:implications for organic carbon burial[J]. Marine Chemistry, 2020, 223: 103813.
DOI
URL
|
[31] |
WRIGHT F F. Sedimentation in the world oceans: Alexander P. Lisitzin. (English edition edited by Kelvin S. Rodolfo.) special publication 17, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla., 218 pp., 181 fig.[J]. Marine Geology, 1975, 18(3): 140-141.
DOI
URL
|
[32] |
PÄLIKE H, LYLE M W, NISHI H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614.
DOI
URL
|
[33] |
LUO M, ALGEO T J, TONG H, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 70-82.
DOI
URL
|
[34] |
JAKOB K A, BOLTON C T, WILSON P A, et al. Glacial-interglacial changes in equatorial Pacific surface-water structure during the Plio-Pleistocene intensification of northern Hemisphere Glaciation[J]. Earth and Planetary Science Letters, 2017, 463: 69-80.
DOI
URL
|
[35] |
MOLLER T, SCHULZ H, HAMANN Y, et al. Sedimentology and geochemistry of an exceptionally preserved last interglacial sapropel S5 in the Levantine Basin (Mediterranean Sea)[J]. Marine Geology, 2012, 291/292/293/294: 34-48.
|
[36] |
DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518.
DOI
URL
|
[37] |
HAYES S P. Benthic current observations at DOMES sites A, B, and C in the Tropical North Pacific Ocean[J]. Marine Geology and Oceanography of the Pacific Manganese Nodule Province, 1979, 19: 83-112.
|
[38] |
KAWABE M, FUJIO S. PacificOcean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
DOI
URL
|
[39] |
汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质, 2009, 29(4): 1-11.
|
[40] |
THUNELL R C. Seasonal and annual variability in particle fluxes in the Gulf of California:a response to climate forcing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 2059-2083.
DOI
URL
|
[41] |
ZHANG Y, LIU Z, ZHAO Y, et al. Mesoscale eddies transport deep-sea sediments[J]. ScientificReports, 2014, 4: 5937.
|
[42] |
田壮才, 郭秀军, 乔路正, 等. 南海北部海底沉积物临界起动流速空间分布特征分析[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4287-4294.
|