地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 410-422.DOI: 10.13745/j.esf.sf.2023.5.32

• 非主题来稿选登 • 上一篇    下一篇

滨海海底边界层对底栖微体化石仿真模拟的影响

张毅恒1,2(), 张涛1, 雍媛媛2, 鱼驰洋2, 肖巨月1, 何凯悦2, 王邓2, 王星3, 王宾1, 杨晓光2, 韩健2,*()   

  1. 1.西北大学 信息科学与技术学院, 陕西 西安 710069
    2.西北大学 地质学系 大陆动力学国家重点实验室/早期生命与环境陕西省重点实验室, 陕西 西安 710069
    3.临沂大学 生命科学学院, 山东 临沂 276000
  • 收稿日期:2022-11-27 修回日期:2023-02-12 出版日期:2024-03-25 发布日期:2024-04-18
  • 通讯作者: *韩 健(1973—),男,研究员,主要从事动物门类的起源与寒武纪生命大爆发的研究。E-mail: elihanj@nwu.edu.cn
  • 作者简介:张毅恒(1997—),男,硕士研究生,信息与通信工程专业。E-mail: zhangyiheng@stumail.nwu.edu.cn
  • 基金资助:
    中国科学院战略性先导科技专项(B类)(XDB26000000);国家自然科学基金项目(41672009);国家自然科学基金项目(41621003);国家自然科学基金项目(41720104002);国家自然科学基金项目(42172016);国家重点研发计划项目(2023YFF0803601)

Effect of boundary layer on simulation of benthic microfossils in coastal seabed

ZHANG Yiheng1,2(), ZHANG Tao1, YONG Yuanyuan2, YU Chiyang2, XIAO Juyue1, HE Kaiyue2, WANG Deng2, WANG Xing3, WANG Bin1, YANG Xiaoguang2, HAN Jian2,*()   

  1. 1. School of Information Science & Technology, Northwest University, Xi’an 710069, China
    2. State Key Laboratory of Continental Dynamics/Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an 710069, China
    3. College of Life Science, Linyi University, Linyi 276000, China
  • Received:2022-11-27 Revised:2023-02-12 Online:2024-03-25 Published:2024-04-18

摘要:

计算流体力学CFD(computational fluid dynamics)近年来在古生物学研究中已有大量应用。该方法在研究生物化石的个体形态、器官功能,以及其与生存环境之间的关系方面具有重要意义。目前古生物领域的CFD仿真对象多为厘米级别体型的生物,而对于毫米级别大小的微体生物的仿真则相对较少。区别于厘米级别的宏体生物,底栖型微体生物的生活环境局限于海床上方垂直高度较小的区域,受海底黏性边界层低流速区域的影响更为明显,因而在设置这类化石仿真的水流环境时应当考虑对于边界层流域水体流速以及海床表面地理环境的还原。本文基于随机表面生成的方法,构建了不平坦的滨海海床表面模型,并模拟了水流在海底边界层附近受海床表面地形影响的流动状态;基于获得的仿真流速数据,我们仿真了寒武纪微型底栖刺细胞动物化石Quadrapyrgite在起伏的海床表面环境中四个不同位置的受水流阻力情况。仿真结果显示,近海床表面处的水体流动可形成明显的低流速区域,且低流速区域的厚度随着入口速度增大而变薄。在起伏表面的凹凸区域中,凸起地带的迎水面形成的低流速区域较薄,流速变化较快;而在凸起地带背水面以及凹陷地带形成的低流速区域较厚,流速较缓且易形成涡旋。流速的差异体现在不同位置的Quadrapyrgite的受阻力大小不同上,其差值可达数倍到数十倍。这种量级的受阻力差值可以在毫米级到厘米级尺度上塑造、影响底栖型生物的分布甚至其自身的摄食行为。本文的研究为CFD方法模拟底栖微型化石的生存环境提供了更加深入的思路和方法。

关键词: 底栖微体化石, 计算流体力学, 海底边界层, 傅里叶变换, 随机表面产生方法

Abstract:

Computational fluid dynamics (CFD) has been used extensively in palaeontology in recent years. This method is important for the study of the relationships among individual morphology of fossils, function of organs, and their living environments. Currently, CFD methods in paleontology are mostly applied to simulate centimeter-sized organisms, while there are relatively few simulations on millimeter-sized microscopic organisms. In contrast to centimeter-sized macrofauna, microbenthos lived closer to the surface of the seabed and are more significantly influenced by the low velocity zone of the near-bottom viscous boundary layer, and therefore the reduction of the boundary layer basin environment needs to be taken into account in the simulation of these fossils. In this paper, a new model of an uneven coastal seabed surface is constructed using a random surface generation method, and the flow state of the bottom boundary layer is simulated as influenced by the topography of the seabed surface. Based on the velocity data obtained from this simulation, we carried out another simulation to analyze the drag forces of sedentary Cambrian cnidaria fossil Quadrapyrgite at four varied locations on the undulating seabed surface environment. The results illustrate that the flow near the seabed surface can form a distinct low-flow region, and the thickness of the low-flow region becomes thinner with the increase of the flow velocity. The bottom boundary layer is thinner in the upslope region of the waterward side where the flow velocity varies rapidly, and thicker, by contrast, in the downslope and gully regions of the backwater side where the flow velocity is slower and more prone to vortex formation. The influence of the difference in flow velocity is also shown in the amounts of drag forces of Quadrapyrgite at different locations, which can vary by a factor of 1-10 to several tens. This variation in drag forces can influence the distribution and feeding behavior of different microbenthos at the micrometer-centimeter scale. The work in this paper provides more in-depth ideas and methods for simulating the survival environment of benthic microfossils.

Key words: benthic microfossils, computational fluid dynamics, bottom boundary layer, Fourier transform, random surface generation

中图分类号: