地学前缘 ›› 2020, Vol. 27 ›› Issue (3): 14-28.DOI: 10.13745/j.esf.sf.2020.4.43
• “非传统稳定同位素:分析方法、示踪机理和主要应用”主题专辑 • 上一篇 下一篇
收稿日期:
2019-07-01
修回日期:
2020-04-21
出版日期:
2020-05-20
发布日期:
2020-05-20
通信作者:
魏海珍
作者简介:
李银川(1992—),男,博士研究生,矿物学、岩石学、矿床学专业。E-mail: lgdlyc@126.com
基金资助:
LI Yinchuan1(), DONG Ge1, LEI Fang2, WEI Haizhen1,*(
)
Received:
2019-07-01
Revised:
2020-04-21
Online:
2020-05-20
Published:
2020-05-20
Contact:
WEI Haizhen
摘要:
硼是一种中等挥发性元素,具有11B和10B两个稳定同位素。两个同位素间高达10%的相对质量差使其在地质过程中引起高达-70‰至+75‰的硼同位素变化。硼在自然界主要与氧键合形成三配位(BO3)和四配位(BO4)结构,因而11B和10B间同位素分馏主要受控于三配体(BO3)和四面体(BO4)间配分。本文综述了低温和高温地质过程的硼同位素分馏的理论和实验研究进展。在溶液中B(OH)3和${B(OH)^{-}_{4}}$间硼同位素分馏受pH和热力学p-T条件控制,实验和理论表征获得常温常压条件下的B(OH)3和$B(OH)^{-}_{4}$间同位素分馏系数(α3-4)变化范围为1.019 4至1.033 3。低温条件下矿物(如碳酸盐、黏土矿物(蒙脱石和伊利石)、针铁矿、水锰矿、硼酸盐)与溶液间硼同位素分馏行为除了受p-T-pH影响外,矿物表面吸附引起的分馏效应十分显著。在中高温过程(蒙脱石伊利石化、富硼电气石和白云母矿物与热液流体,以及硅酸盐熔体与流体)中硼同位素分馏行为受到硼配位构型、化学成分以及物理化学条件的控制。随着硼同位素分馏机理研究的深入以及越来越完善的地质储库硼同位素端员特征表征,硼同位素地球化学指标可以灵敏示踪成矿物质来源、探究成矿作用与成因模式和重建成矿过程物理化学条件。目前矿床硼同位素地球化学研究的难点在于实现不同赋存相(如流体、矿物和熔体)中硼配位键合结构和硼同位素组成的精细化表征。
中图分类号:
李银川, 董戈, 雷昉, 魏海珍. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3): 14-28.
LI Yinchuan, DONG Ge, LEI Fang, WEI Haizhen. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study[J]. Earth Science Frontiers, 2020, 27(3): 14-28.
研究方法 | α3-4 | 参考文献 |
---|---|---|
实验研究 | ||
合成海水实验(25 ℃) | 1.027 2±0.000 6 | [12] |
纯水实验(25 ℃) | 1.030 8±0.002 3 | |
合成海水实验(25 ℃) | 1.028 5±0.001 6 | [13] |
天然海水测量实验(25 ℃) | 1.026±0.001 | [14] |
理论计算 | ||
实验光谱和力场模拟(26.8 ℃) | 1.019 4 | [15] |
实验光谱和力场模拟(26.8 ℃) | 1.017 6 | [16] |
从头算分子轨道理论(分子,25 ℃) | 1.026 | [17] |
从头算分子轨道理论(海水,25 ℃) | 1.027 | [18] |
从头算分子轨道理论(纯水,25 ℃) | 1.025 5 | |
密度泛函理论(水溶液,25 ℃) | 1.028 5 | [19] |
密度泛函理论(水溶液,25 ℃) | 1.033 3±0.001 3 | [20] |
校正的分子轨道理论(水溶液,25 ℃) | 1.026~1.028 | |
密度泛函理论(水溶液,25 ℃) | 1.031 | [21] |
表1 常温常压条件下溶液中B(OH)3和B(OH ) 4 -之间硼同位素分馏因子实验值和计算值
Table 1 Experimental and calculated boron isotopic fractionation factors between B(OH)3 and B(OH ) 4 - in aqueous solution at ambient condition
研究方法 | α3-4 | 参考文献 |
---|---|---|
实验研究 | ||
合成海水实验(25 ℃) | 1.027 2±0.000 6 | [12] |
纯水实验(25 ℃) | 1.030 8±0.002 3 | |
合成海水实验(25 ℃) | 1.028 5±0.001 6 | [13] |
天然海水测量实验(25 ℃) | 1.026±0.001 | [14] |
理论计算 | ||
实验光谱和力场模拟(26.8 ℃) | 1.019 4 | [15] |
实验光谱和力场模拟(26.8 ℃) | 1.017 6 | [16] |
从头算分子轨道理论(分子,25 ℃) | 1.026 | [17] |
从头算分子轨道理论(海水,25 ℃) | 1.027 | [18] |
从头算分子轨道理论(纯水,25 ℃) | 1.025 5 | |
密度泛函理论(水溶液,25 ℃) | 1.028 5 | [19] |
密度泛函理论(水溶液,25 ℃) | 1.033 3±0.001 3 | [20] |
校正的分子轨道理论(水溶液,25 ℃) | 1.026~1.028 | |
密度泛函理论(水溶液,25 ℃) | 1.031 | [21] |
体系 | T/℃ | p/MPa | [B]配分系数 | 参考文献 |
---|---|---|---|---|
流体-蒸汽 | 450 | 38.6~41.8 | 1.19~1.45 | [25] |
流体-蒸汽 | 400 | 23.4~27.9 | 1.09~2.3 | [25] |
黑云母-火山玻璃 | 755~820 | 150~180 | 0.011 | [63] |
黑云母-火山玻璃 | 750~800 | 100~150 | 0.004 | [63] |
黑云母-火山玻璃 | 850~880 | 100~200 | 0.008 | [63] |
方解石-流体 | 20 | 0.1 | 2.5~4.0 | [33] |
高镁方解石-流体 | 20 | 0.1 | 6.5~9.9 | [33] |
文石-流体 | 20 | 0.1 | 10.2~22.8 | [33] |
针铁矿表面-不同pH流体 | 25 | 0.1 | 6±0.8~39±1.1 | [46] |
水钠锰矿表面-不同pH流体 | 25 | 0.1 | 3±0.8~34±1.2 | [46] |
流体-玄武岩熔体 | 950~1 100 | 110~170 | 0.33~0.54 | [4] |
流体-流纹岩熔体 | 750~850 | 500 | 1.2 | [4] |
低盐度流体-细晶岩熔体 | 800 | 100 | 4.6±1.3 | [65] |
高盐度流体-细晶岩熔体 | 800 | 100 | 0.91±0.49 | [65] |
单斜辉石-流体 | 900 | 2 000 | 0.007 7±0.001 9~0.031±0.013 | [66] |
石榴石-流体 | 900 | 2 000 | 0.000 62±0.000 12 | [66] |
橄榄石-熔体 | 1 325~1 450 | 1 000~1 500 | 0.019~0.048 | [67] |
斜方辉石-熔体 | 1 450 | 1 000 | 0.027 | [67] |
单斜辉石-熔体 | 1 325 | 1 000 | 0.117 | [67] |
尖晶石-熔体 | 1 325 | 1 000 | 0.08 | [67] |
蒸汽-熔体 | > 645 | 200 | ≥ 1 | [68] |
表2 矿物、熔体、流体、蒸汽体系的平衡硼浓度配分系数
Table 2 Boron equilibrium partition coefficients among different mineral, melt, fluid and steam systems
体系 | T/℃ | p/MPa | [B]配分系数 | 参考文献 |
---|---|---|---|---|
流体-蒸汽 | 450 | 38.6~41.8 | 1.19~1.45 | [25] |
流体-蒸汽 | 400 | 23.4~27.9 | 1.09~2.3 | [25] |
黑云母-火山玻璃 | 755~820 | 150~180 | 0.011 | [63] |
黑云母-火山玻璃 | 750~800 | 100~150 | 0.004 | [63] |
黑云母-火山玻璃 | 850~880 | 100~200 | 0.008 | [63] |
方解石-流体 | 20 | 0.1 | 2.5~4.0 | [33] |
高镁方解石-流体 | 20 | 0.1 | 6.5~9.9 | [33] |
文石-流体 | 20 | 0.1 | 10.2~22.8 | [33] |
针铁矿表面-不同pH流体 | 25 | 0.1 | 6±0.8~39±1.1 | [46] |
水钠锰矿表面-不同pH流体 | 25 | 0.1 | 3±0.8~34±1.2 | [46] |
流体-玄武岩熔体 | 950~1 100 | 110~170 | 0.33~0.54 | [4] |
流体-流纹岩熔体 | 750~850 | 500 | 1.2 | [4] |
低盐度流体-细晶岩熔体 | 800 | 100 | 4.6±1.3 | [65] |
高盐度流体-细晶岩熔体 | 800 | 100 | 0.91±0.49 | [65] |
单斜辉石-流体 | 900 | 2 000 | 0.007 7±0.001 9~0.031±0.013 | [66] |
石榴石-流体 | 900 | 2 000 | 0.000 62±0.000 12 | [66] |
橄榄石-熔体 | 1 325~1 450 | 1 000~1 500 | 0.019~0.048 | [67] |
斜方辉石-熔体 | 1 450 | 1 000 | 0.027 | [67] |
单斜辉石-熔体 | 1 325 | 1 000 | 0.117 | [67] |
尖晶石-熔体 | 1 325 | 1 000 | 0.08 | [67] |
蒸汽-熔体 | > 645 | 200 | ≥ 1 | [68] |
图1 花岗岩岩浆流体出溶对流体相、残余熔体和电气石B同位素组成的影响。上标Ⅲ和Ⅳ表示赋存相中硼的配位数(据文献[86]修改)
Fig.1 Schematic diagram showing predicted effect of fluid exsolution from granitic magma on boron isotopic compositions of fluid phase, residual melt, and tourmaline. Superscripts Ⅲ and Ⅳ indicate the boron coordination number for different phases. Modified from [86].
图2 热液流体与不同硼源岩石作用生成电气石δ11B值变化示意图(据文献[87]修改)
Fig.2 Schematic diagram showing changes of tourmaline δ11B value due to interactions between hydrothermal fluid and different boron source rocks.Modified from [87].
图4 不同类型母岩中电气石硼同位素组成及推测的硼源(据文献[100]修改) 绿色字体表示轻同位素的硼源,红色字体表示重同位素的硼源。
Fig.4 Boron isotopic compositions of tourmalines from different host-rocks (colored boxes) and various inferred boron source (grey bands). Label colors: Green—sources for lighter boron isotope;Red—sources for heavier boron isotope. Modified from [100].
图5 地球主要硅酸盐储库中B总量和同位素组成。硅酸盐地球(BSE)等于原始地幔(据文献[94]修改)
Fig.5 Geochemical budget of B in Earth's major silicate reservoirs. The Bulk Silicate Earth (BSE) equals the primitive mantle. Modified from [94].
[1] | MARSCHALL H R, FOSTER G L. Boron isotopes: the fifth element[M]// Boron isotopes in the Earth and planetary sciences: a short history and introduction. Cham, Switzerland: Springer, 2018: 1-11. |
[2] | PALMER M R, SWIHART G H. Boron isotope geochemistry: an overview[J]. Reviews in Mineralogy and Geochemistry, 1996, 33(1):709-744. |
[3] | O'NEIL J. Theoretical and experimental aspects of isotopic fractionation[J]. Reviews in Mineralogy, 1986, 16:1-40. |
[4] |
HERVIG R L, MOORE G M, WILLIAMS L B, et al. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt[J]. American Mineralogist, 2002, 87(5/6):769-774.
DOI URL |
[5] | CATANZARO E J, CHAMPION C E, GARNER E L, et al. Boric acid: isotopic and assay standard reference materials[M]. Washington DC: National Bureau Standards, Special Publication, 1970, 260(17):70. |
[6] | 陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004: 106-108. |
[7] |
UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562-581. DOI: 10.1039/jr9470000562
DOI |
[8] |
BIGELEISEN J, MAYER M G. Calculation of equilibrium constants for isotopic exchange reactions[J]. Journal of Chemical Physics, 1947, 15(5):261-267.
DOI URL |
[9] | WEDEPHOL K H. Handbook of boron geochemistry[M]. Berlin: Springer, 1978. |
[10] | 刘羿, 彭子成, 刘卫国, 等. 古海水 pH 值代用指标: 海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12):1240-1250. |
[11] | 陈永权, 蒋少涌. 一种古海洋环境的静态恢复法[J]. 海洋地质前沿, 2003, 19(5):1-6. |
[12] |
KLOCHKO K, KAUFMAN A J, YAO W, et al. Experimental measurement of boron isotope fractionation in seawater[J]. Earth and Planetary Science Letters, 2006, 248(1):276-285.
DOI URL |
[13] |
BYRNE R H, YAO W, KLOCHKO K, et al. Experimental evaluation of the isotopic exchange equilibrium 10B(OH)3+11${B(OH)^{-}_{4}}$=11B(OH)3+10${B(OH)^{-}_{4}}$ in aqueous solution[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(4):684-688.
DOI URL |
[14] |
NIR O, VENGOSH A, HARKNESS J S, et al. Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH[J]. Earth and Planetary Science Letters, 2015, 414:1-5.
DOI URL |
[15] |
KAKIHANA H, KOTAKA M, SATOH S, et al. Fundamental studies on the ion-exchange separation of boron isotopes[J]. Bulletin of the Chemical Society of Japan, 1977, 50(1):158-163.
DOI URL |
[16] |
SCHMIDT C, THOMAS R, HEINRICH W. Boron speciation in aqueous fluids at 22 to 600 ℃ and 0.1 MPa to 2 GPa[J]. Geochimica et Cosmochimica Acta, 2005, 69(2):275-281.
DOI URL |
[17] |
OI T. Calculations of reduced partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory[J]. Journal of Nuclear Science and Technology, 2000, 37(2):166-172.
DOI URL |
[18] |
LIU Y, TOSSELL J A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates[J]. Geochimica et Cosmochimica Acta, 2005, 69(16):3995-4006.
DOI URL |
[19] |
RUSTAD J R, BYLASKA E J. Ab initio calculation of isotopic fractionation in B(OH)3(aq) and ${B(OH)^{-}_{4}}$(aq)[J]. Journal of the American Chemical Society, 2007, 129(8):2222-2223.
DOI URL |
[20] |
RUSTAD J R, BYLASKA E J, JACKSON V E, et al. Calculation of boron-isotope fractionation between B(OH)3(aq) and ${B(OH)^{-}_{4}}$(aq)[J]. Geochimica et Cosmochimica Acta, 2010, 74(10):2843-2850.
DOI URL |
[21] | 刘琪, 尹新雅. 水溶液B(OH)3和${B(OH)^{-}_{4}}$间硼同位素平衡分馏参数的理论计算[J]. 矿物学报, 2014, 34(4):535-541. |
[22] |
ZEEBE R E. Stable boron isotope fractionation between dissolved B(OH)3 and ${B(OH)^{-}_{4}}$[J]. Geochimica et Cosmochimica Acta, 2005, 69(11):2753-2766.
DOI URL |
[23] |
SANCHEZ-VALLE C, REYNARD B, DANIEL I, et al. Boron isotopic fractionation between minerals and fluids: new insights from in situ high pressure-high temperature vibrational spectroscopic data[J]. Geochimica et Cosmochimica Acta, 2005, 69(17):4301-4313.
DOI URL |
[24] |
KOWALSKI P M, WUNDER B, JAHN S. Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high p and T[J]. Geochimica et Cosmochimica Acta, 2013, 101:285-301.
DOI URL |
[25] |
SPIVACK A J, BERNDT M E, SEYFRIED W E. Boron isotope fractionation during supercritical phase separation[J]. Geochimica et Cosmochimica Acta, 1990, 54(8):2337-2339.
DOI URL |
[26] |
LIEBSCHER A, MEIXNER A, ROMER R, et al. Liquid-vapor fractionation of boron and boron isotopes: experimental calibration at 400 ℃/23 MPa to 450 ℃/42 MPa[J]. Geochimica et Cosmochimica Acta, 2005, 69(24):5693-5704.
DOI URL |
[27] | MARSCHALL H R, FOSTER G L. Boron isotopes: the fifth element[M]// Boron isotope fractionation among vapor-liquids-solids-melts: experiments and atomistic modeling. Cham, Switzerland: Springer, 2018: 33-69. |
[28] |
WILLIAMS L B, TURNER A, HERVIG R L. Intracrystalline boron isotope partitioning in illite-smectite: testing the geothermometer[J]. American Mineralogist, 2007, 92(11/12):1958-1965.
DOI URL |
[29] | CHRIST C. Substitution of boron in silicate crystals[J]. Norsk Geol Tidsskr, 1965, 45(4):423-8. |
[30] | SEN S, STEBBINS J F, HEMMING N G, et al. Coordination environments of B impurities in calcite and aragonite polymorphs: A 11B MAS NMR study[J]. American Mineralogist, 1994, 79(9/10):819-825. |
[31] |
KLOCHKO K, CODY G D, TOSSELL J A, et al. Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):1890-1900.
DOI URL |
[32] |
MAVROMATIS V, MONTOUILLOUT V, NOIREAUX J, et al. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 2015, 150(2):299-313.
DOI URL |
[33] |
HEMMING N G, REEDER R J, HANSON G N. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate[J]. Geochimica et Cosmochimica Acta, 1995, 59(2):371-379.
DOI URL |
[34] |
SANYAL A, HEMMING N G, BROECKER W S, et al. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments[J]. Paleoceanography, 1996, 11(5):513-517.
DOI URL |
[35] |
SANYAL A, NUGENT M, REEDER R J, et al. Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments[J]. Geochimica et Cosmochimica Acta, 2000, 64(9):1551-1555.
DOI URL |
[36] |
XIAO Y K, LI H L, LIU W G, et al. Boron isotopic fractionation in laboratory inorganic carbonate precipitation: evidence for the incorporation of B(OH)3 into carbonate[J]. Science in China, 2008, 51(12):1776-1785.
DOI URL |
[37] |
TOSSELL J A. Acid adsorption on humic acids: ab initio calculation of structures, stabilities, 11B NMR and 11B, 10B isotopic fractionations of surface complexes[J]. Geochimica et Cosmochimica Acta, 2006, 70(20):5089-5103.
DOI URL |
[38] |
BALAN E, NOIREAUX J, MAVROMATIS V, et al. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion[J]. Geochimica et Cosmochimica Acta, 2018, 222:117-129.
DOI URL |
[39] |
WANG Y J, WEI H Z, JIANG S Y, et al. Mechanism of boron incorporation into calcites and associated isotope fractionation in a steady-state carbonate-seawater system[J]. Applied Geochemistry, 2018, 98:221-236.
DOI URL |
[40] |
OI T, KATO J, OSSAKA T, et al. Boron isotope fractionation accompanying boron mineral formation from aqueous boric acid-sodium hydroxide solutions at 25 ℃[J]. Geochemical Journal, 1991, 25(5):377-385.
DOI URL |
[41] |
OI T, NOMURA M, MUSASHI M, et al. Boron isotopic compositions of some boron minerals[J]. Geochimica et Cosmochimica Acta, 1989, 53(12):3189-3195.
DOI URL |
[42] |
VENGOSH A, STATINSKY A, KOLODNY Y, et al. Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20(9):799.
DOI URL |
[43] |
SPIVACK A J, EDMOND J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5):1033-1043.
DOI URL |
[44] |
SCHWARCZ H P, AGYEI E K, MCMULLEN C C. Boron isotopic fractionation during clay adsorption from sea-water[J]. Earth and Planetary Science Letters, 1969, 6(1):1-5.
DOI URL |
[45] |
PALMER M R, SPIVACK A J, EDMOND J M. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay[J]. Geochimica et Cosmochimica Acta, 1987, 51(9):2319-2323.
DOI URL |
[46] |
LEMARCHAND E, SCHOTT J, GAILLARDET J. How surface complexes impact boron isotope fractionation: evidence from Fe and Mn oxides sorption experiments[J]. Earth and Planetary Science Letters, 2007, 260(1):277-296.
DOI URL |
[47] |
HARDER H. Boron content of sediments as a tool in facies analysis[J]. Sedimentary Geology, 1970, 4(1):153-175.
DOI URL |
[48] |
WILLIAMS L B, HERVIG R L, HOLLOWAY J R, et al. Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during illitization of smectite[J]. Geochimica et Cosmochimica Acta, 2001, 65(11):1769-1782.
DOI URL |
[49] |
PALMER M R, LONDON D, MORGAN G B, et al. Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: a temperature-and pressure-dependent isotopic system[J]. Chemical Geology: Isotope Geoscience Section, 1992, 101(1/2):123-129.
DOI URL |
[50] |
MEYER C, WUNDER B, MEIXNER A, et al. Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation[J]. Contributions to Mineralogy and Petrology, 2008, 156(2):259-267.
DOI URL |
[51] |
MARSCHALL HR, MEYER C, WUNDER B, et al. Experimental boron isotope fractionation between tourmaline and fluid: confirmation from in situ analyses by secondary ion mass spectrometry and from Rayleigh fractionation modelling[J]. Contributions to Mineralogy and Petrology, 2009, 158(5):675-681.
DOI URL |
[52] | KUTZSCHBACH M, WUNDER B, TRUMBULL R, et al. The effect of tetrahedral B in the B isotope fractionation between tourmaline and fluid[M]. Berlin: GeoBerlin, 2016. |
[53] |
LI Y C, CHEN H W, WEI H Z, et al. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: a density functional theory study[J]. Chemical Geology, 2020, 536:119466.
DOI URL |
[54] |
WUNDER B, MEIXNER A, ROMER R L, et al. The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid[J]. Lithos, 2005, 84(3/4):206-216.
DOI URL |
[55] |
KLEMME S, MARSCHALL H R, JACOB D E, et al. Trace-element partitioning and boron isotope fractionation between white mica and tourmaline[J]. Canadian Mineralogist, 2011, 49(36):165-176.
DOI URL |
[56] | DINGWELL D B, PICHAVANT M, HOLTZ F. Experimental studies of boron in granitic melts[J]. Reviews in Mineralogy and Geochemistry, 1996, 33(1):330-385. |
[57] |
DELL W J, BRAY P J, XIAO S Z. 11B NMR studies and structural modeling of Na2O-B2O3-SiO2 glasses of high soda content[J]. Journal of Non-Crystalline Solids, 1983, 58(1):1-16.
DOI URL |
[58] |
GEISINGER K L, OESTRIKE R, NAVROTSKY A, et al. Thermochemistry and structure of glasses along the join NaAlSi3O8-NaBSi3O8[J]. Geochimica et Cosmochimica Acta, 1988, 52(52):2405-2414.
DOI URL |
[59] |
MYSEN B. Structure of H2O-saturated peralkaline aluminosilicate melt and coexisting aluminosilicate-saturated aqueous fluid determined in-situ to 800 ℃ and ~800 MPa[J]. Geochimica et Cosmochimica Acta, 2010, 74(14):4123-4139.
DOI URL |
[60] |
SCHMIDT B C, ZOTOV N, DUPREE R. Structural implications of water and boron dissolution in albite glass[J]. Journal of Non-Crystalline Solids, 2004, 337(3):207-219.
DOI URL |
[61] |
WU J, STEBBINS J F. Temperature and modifier cation field strength effects on aluminoborosilicate glass network structure[J]. Journal of Non-Crystalline Solids, 2013, 362(1):73-81.
DOI URL |
[62] |
WU J, STEBBINS J F. Quench rate and temperature effects on boron coordination in aluminoborosilicate melts[J]. Journal of Non-Crystalline Solids, 2010, 356(41):2097-2108.
DOI URL |
[63] |
TONARINI S, FORTE C, PETRINI R, et al. Melt/biotite 11B/10B isotopic fractionation and the boron local environment in the structure of volcanic glasses[J]. Geochimica et Cosmochimica Acta, 2003, 67(10):1863-1873.
DOI URL |
[64] |
DEEGAN F M, TROLL V R, WHITEHOUSE M J, et al. Boron isotope fractionation in magma via crustal carbonate dissolution[J]. Scientific Reports, 2016, 6:30774.
DOI URL |
[65] |
SCHATZ O J, DOLEJŠ D, STIX J, et al. Partitioning of boron among melt, brine and vapor in the system haplogranite-H2O-NaCl at 800 ℃ and 100 MPa[J]. Chemical Geology, 2004, 210(1/2/3/4):135-147.
DOI URL |
[66] |
BRENAN J M, RYERSON F J, SHAW H F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models[J]. Geochimica et Cosmochimica Acta, 1998, 62(19/20):3337-3347.
DOI URL |
[67] |
CHAUSSIDON M, LIBOUREL G. Boron partitioning in the upper mantle: an experimental and ion probe study[J]. Geochimica et Cosmochimica Acta, 1993, 57(23/24):5053-5062.
DOI URL |
[68] |
LONDON D, HERVIG R L, MORGAN G B. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99(3):360-373.
DOI URL |
[69] | LONDON D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184/185/186/187:74-104. |
[70] |
PERETYAZHKO I S, ZAGORSKY V Y, SMIRNOV S Z, et al. Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia)[J]. Chemical Geology, 2004, 210(1):91-111.
DOI URL |
[71] |
THOMAS R, FÖRSTER H J, HEINRICH W, The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study[J]. Contributions to Mineralogy and Petrology, 2003, 144(4):457-472.
DOI URL |
[72] |
SIRBESCU M L C, NABELEK P I. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota: evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2003, 67(13):2443-2465.
DOI URL |
[73] |
VEKSLER I V, THOMAS R. An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa[J]. Contributions to Mineralogy and Petrology, 2002, 143(6):673-683.
DOI URL |
[74] |
THOMAS R, WEBSTER J D, HEINRICH W. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J]. Contributions to Mineralogy and Petrology, 2000, 139(4):394-401.
DOI URL |
[75] | LONDON D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71(3/4):376-395. |
[76] |
WITTENBRINK J, LEHMANN B, WIEDENBECK M, et al. Boron isotope composition of melt inclusions from porphyry systems of the Central Andes: a reconnaissance study[J]. Terra Nova, 2009, 21(2):111-118.
DOI URL |
[77] |
HENRY D J, NOVÁK M, HAWTHORNE F C, et al. Nomeclature of the tourmaline-supergroup minerals[J]. American Mineralogist, 2011, 96(5/6):895-913.
DOI URL |
[78] |
VAN HINSBERG V J, HENRY D J, DUTROW B L. Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past[J]. Elements, 2011, 7(5):327-332.
DOI URL |
[79] |
KASEMANN S A, MEIXNER A, ERZINGER J, et al. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)[J]. Journal of South American Earth Sciences, 2004, 16(8):685-697.
DOI URL |
[80] |
PALMER M R, HELVACI C. The boron isotope geochemistry of the neogene borate deposits of western Turkey[J]. Geochimica et Cosmochimica Acta, 1997, 61(15):3161-3169.
DOI URL |
[81] |
SWIHART G H, MCBAY E H, SMITH D H, et al. A boron isotopic study of a mineralogically zoned lacustrine borate deposit: the Kramer deposit, California, USA[J]. Chemical Geology, 1996, 127(1/2/3):241-250.
DOI URL |
[82] |
PENG Q M, PALMER M R. The Palaeoproterozoic boron deposits in eastern Liaoning, China: a metamorphosed evaporite[J]. Precambrian Research, 1995, 72(3/4):185-197.
DOI URL |
[83] |
PALMER M R, HELVACI C. The boron isotope geochemistry of the Kirka borate deposit, western Turkey[J]. Geochimica et Cosmochimica Acta, 1995, 59(17):3599-3605.
DOI URL |
[84] |
CODEÇO M S, WEIS P, TRUMBULL R B, et al. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation[J]. Economic Geology, 2019, 114(1):153-163.
DOI URL |
[85] |
YAMAOKA K, MATSUKURA S, ISHIKAWA T, et al. Boron isotope systematics of a fossil hydrothermal system from the Troodos ophiolite, Cyprus: water-rock interactions in the oceanic crust and subseafloor ore deposits[J]. Chemical Geology, 2015, 396:61-73.
DOI URL |
[86] | MARSCHALL H R, FOSTER G L. Boron Isotopes: The fifth element[M]// Boron isotopes in the continental crust: granites, pegmatites, felsic volcanic rocks, and related ore deposits. Cham, Switzerland: Springer, 2018: 249-272. |
[87] |
PALMER M R, SLACK J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contributions to Mineralogy and Petrology, 1989, 103(4):434-451.
DOI URL |
[88] |
SLACK J F, TRUMBULL R B. Tourmaline as a recorder of ore-forming processes[J]. Elements, 2011, 7(5):321-326.
DOI URL |
[89] |
HENRY D J, DUTROW B L. Tourmaline at diagenetic to low-grade metamorphic conditions: its petrologic applicability[J]. Lithos, 2012, 154(4):16-32.
DOI URL |
[90] | HENRY D J, DUTROW B L. Metamorphic tourmaline and its petrologic applications[J]. Reviews in Mineralogy and Geochemistry, 1996, 33(1):503-557. |
[91] | DUTROW B L, HENRY D J. Tourmaline compositions and textures: reflections of the fluid phase[J]. Journal of Geosciences, 2018, 63(2):99-110. |
[92] |
DUTROW B L, HENRY D J. Fibrous tourmaline: a sensitive probe of fluid compositions and petrologic environments fibrous tourmaline[J]. The Canadian Mineralogist, 2016, 54(1):311-335.
DOI URL |
[93] |
XIAO J, XIAO Y K, JIN Z D, et al. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 2013, 60(4):431-447.
DOI URL |
[94] | MARSCHALL H R, FOSTER G L. Boron isotopes: the fifth element[M]// Boron isotopes in the ocean floor realm and the mantle. Cham, Switzerland: Springer, 2018: 189-215. |
[95] | WHITE W M. Geochemistry[M]. Chichester: Wiley-Blackwell, 2013: 417-422. |
[96] |
YANG S Y, JIANG S Y, PALMER M R. Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: implication for their formation from B-rich melt to hydrothermal fluids[J]. Chemical Geology, 2015, 419:102-113.
DOI URL |
[97] |
GOU G N, WANG Q, WYMAN D A, et al. In-situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: evidence for melting of continental crust and sediment recycling[J]. Solid Earth Sciences, 2017, 2(2):43-54.
DOI URL |
[98] |
ZHOU Q, LI W, WANG G, et al. Chemical and boron isotopic composition of tourmaline from the Conadong leucogranite-pegmatite system in South Tibet[J]. Lithos, 2019, 326/327:529-539.
DOI URL |
[99] |
MARSCHALL H R, JIANG S Y. Tourmaline isotopes: no element left behind[J]. Elements, 2011, 7(5):313-319.
DOI URL |
[100] |
VAN HINSBERG V J, HENRY D J, MARSCHALL H R. Tourmaline: an ideal indicator of its host environment[J]. The Canadian Mineralogist, 2011, 49(1):1-16.
DOI URL |
[101] |
CABRAL A R, LEHMANN B, TUPINAMBÁ M, et al. Geology, mineral chemistry and tourmaline B isotopes of the Córrego Bom Sucesso area, southern Serra do Espinhaço, Minas Gerais, Brazil: implications for Au-Pd-Pt exploration in quartzitic terrain[J]. Journal of Geochemical Exploration, 2011, 110(3):260-277.
DOI URL |
[102] |
SLACK J F, PALMER M R, STEVENS B P. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits[J]. Nature, 1989, 342:913-916.
DOI URL |
[103] | 薛春纪, 蒋少涌, 李延河. 东秦岭泥盆纪山阳—柞水成矿区电气石矿物化学和硼同位素组成[J]. 地球化学, 1997, 26(1):37-45. |
[104] |
MERCADIER J, RICHARD A, CATHELINEAU M. Boron-and magnesium-rich marine brines at the origin of giant unconformity-related uranium deposits: δ 11B evidence from Mg-tourmalines[J]. Geology, 2012, 40(3):231-234.
DOI URL |
[105] |
XAVIER R P, WIEDENBECK M, TRUMBULL R B, et al. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajas Mineral Province (Brazil)[J]. Geology, 2008, 36(9):743-746.
DOI URL |
[106] |
SU Z K, ZHAO X F, LI X C, et al. Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: the worldclass Dahongshan Fe-Cu deposit in SW China[J]. Chemical Geology, 2016, 441:265-279.
DOI URL |
[107] |
MOLNÁR F, MÄNTTÄRI I, O'BRIEN H, et al. Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland[J]. Ore Geology Reviews, 2016, 77:133-62.
DOI URL |
[108] |
LAMBERT-SMITH J S, ROCHOLL A, TRELOAR P J, et al. Discriminating fluid source regions in orogenic gold deposits using B-isotopes[J]. Geochimica et Cosmochimica Acta, 2016, 194:57-76.
DOI URL |
[109] |
YAN X L, CHEN B. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: implications for the origin of borate deposit[J]. Journal of Asian Earth Sciences, 2014, 94:252-66.
DOI URL |
[110] |
PAL D C, TRUMBULL R B, WIEDENBECK M. Chemical and boron isotope compositions of tourmaline from the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, India: implications for the sources and evolution of mineralizing fluids[J]. Chemical Geology, 2010, 277(3/4):245-260.
DOI URL |
[111] |
KRIENITZ M S, TRUMBULL R, HELLMANN A, et al. Hydrothermal gold mineralization at the Hira Buddini gold mine, India: constraints on fluid evolution and fluid sources from boron isotopic compositions of tourmaline[J]. Mineralium Deposita, 2008, 43(4):421-434.
DOI URL |
[112] |
JIANG S Y, PALMER M R, YEATS C J. Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia[J]. Chemical Geology, 2002, 188(3/4):229-247.
DOI URL |
[113] |
JIANG S Y, PALMER M R, SLACK J F, et al. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada[J]. Chemical Geology, 1999, 158(1/2):131-144.
DOI URL |
[114] |
QIAN L, LAI J, ZHANG S, et al. Chemical and boron isotopic compositions of tourmaline in the Longtoushan hydrothermal gold deposit, Guangxi, China: implications for gold mineralization[J]. Acta Geochimica, 2019, 38(2):277-291.
DOI URL |
[115] |
WANG Z, CHEN B, YAN X. Geochemistry and boron isotopic compositions of tourmaline from the Paleoproterozoic amphibolites, NE China: implications for the origin of borate deposit[J]. Precambrian Research, 2018, 326(15):258-271.
DOI URL |
[116] |
CODEÇO M S, WEIS P, TRUMBULL R B, et al. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal[J]. Chemical Geology, 2017, 468:1-16.
DOI URL |
[117] |
BAKSHEEV I A, TRUMBULL R B, POPOV M P, et al. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia[J]. Mineralium Deposita, 2017, 53(4):565-583.
DOI URL |
[118] |
ZHENG Z, DENG X H, CHEN H J, et al. Fluid sources and metallogenesis in the Baiganhu W-Sn deposit, East Kunlun, NW China: insights from chemical and boron isotopic compositions of tourmaline[J]. Ore Geology Review, 2016, 72:1129-1142.
DOI URL |
[119] |
TORNOS F, VELASCO F. The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin[J]. Mineralium Deposita, 2012, 47(5):483-499.
DOI URL |
[120] |
YAVUZ F, JIANG S Y, KARAKAYA N, et al. Trace-element, rare-earth element and boron isotopic compositions of tourmaline from a vein-type Pb-Zn-Cu-U deposit, NE Turkey[J]. International Geology Review, 2011, 53(1):1-24.
DOI URL |
[121] |
VAN HINSBERG V J, MARSCHALL H R. Boron isotope and light element sector zoning in tourmaline: implications for the formation of B-isotopic signatures[J]. Chemical Geology, 2007, 238(3):141-148.
DOI URL |
[122] |
JIANG S Y, YANG J H, MILAN N, et al. Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic[J]. Geochemical Journal, 2003, 37(5):545-556.
DOI URL |
[123] |
PESQUERA A, TORRES-RUIZ J, GIL-CRESPO P P, et al. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Caceres, Spain)[J]. American Mineralogist, 1999, 84(1/2):55-69.
DOI URL |
[124] |
SIEGEL K, WAGNER T, TRUMBULL R B, et al. Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (Northern Sweden)[J]. Chemical Geology, 2016, 421:1-16.
DOI URL |
[125] | LÜ Z, LIU C, LIU J, et al. Carbon, oxygen and boron isotopic studies of Huangbai-shuwan witherite deposit at Ziyang and Wenyuhe witherite deposit at Zhushan[J]. Science in China Series D: Earth Sciences, 2003, 46(12):1273-1291. |
[126] |
GROVES D, CONDIE K, GOLDFARB R, et al. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits[J]. Economic Geology, 2005, 100(2):203-224.
DOI URL |
[127] |
JIANG S Y. Boron isotope geochemistry of hydrothermal ore deposits in China: a preliminary study[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10):851-858.
DOI URL |
[128] |
HANSEN C T, MEIXNER A, KASEMANN S A, et al. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations[J]. Geochimica et Cosmochimica Acta, 2017, 217:51-79.
DOI URL |
[1] | 翟裕生. 试论矿床成因的基本模型[J]. 地学前缘, 20140101, 21(1): 1-8. |
[2] | 张前龙, 周永章, 郭兰萱, 原桂强, 虞鹏鹏, 王汉雨, 朱彪彪, 韩枫, 龙师尧. 找矿知识图谱的智能化应用:以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15. |
[3] | 李方兰, 刘学龙, 周云满, 赵成峰, 李守奎, 王基元, 陆波德, 李庆锐, 张卫文, 王海, 曹振梁, 周杰虎. 滇西保山地块陡崖铁铜多金属矿床石榴子石年代学及其地球化学特征[J]. 地学前缘, 2024, 31(3): 113-132. |
[4] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[5] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[6] | 何进忠, 丁振举, 朱永新, 甄红旭, 张万仁, 刘杰. 甘肃西秦岭矿床成矿系列及其量化评价[J]. 地学前缘, 2024, 31(3): 218-234. |
[7] | 王岩, 秦燕, 黎华, 王登红, 孙赫, 王成辉, 黄凡. 东北地区金矿成矿规律及找矿方向[J]. 地学前缘, 2024, 31(3): 235-244. |
[8] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[9] | 李海东, 田世洪, 刘斌, 胡鹏, 吴建勇, 陈正乐. 粤北地区琶江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 地学前缘, 2024, 31(2): 270-283. |
[10] | 杨立强, 杨伟, 张良, 高雪, 申世龙, 王偲瑞, 徐瀚涛, 贾晓晨, 邓军. 热液成矿系统构造控矿理论[J]. 地学前缘, 2024, 31(1): 239-266. |
[11] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[12] | 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 伟晶岩型锂矿床地球物理探测及可可托海实例[J]. 地学前缘, 2023, 30(5): 244-254. |
[13] | 陈雷, 聂潇, 刘凯, 庞绪勇, 张英利. 东秦岭官坡地区火炎沟伟晶岩型锡铌钽矿床矿物学和年代学特征[J]. 地学前缘, 2023, 30(5): 40-58. |
[14] | 洪涛, 翟明国, 王岳军, 刘星成, 徐兴旺, 高俊, 胡明曦, 马靖. 锂铍络合物稳定性与花岗伟晶岩中锂铍“差异跃迁”耦合关联[J]. 地学前缘, 2023, 30(5): 93-105. |
[15] | 王洛锋, 王功文, 许文辉, 徐森民, 何亚清, 王春毅, 杨涛, 周晓将, 黄蕾蕾, 左玲, 牟妮妮, 曹毅, 刘志飞, 常瑜琳. 智能矿山大数据的地学信息挖掘与知识发现:以河南上房沟钼(铁)5G+矿山为例[J]. 地学前缘, 2023, 30(4): 317-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||