地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 93-105.DOI: 10.13745/j.esf.sf.2023.5.3

• 矿化富集机理 • 上一篇    下一篇

锂铍络合物稳定性与花岗伟晶岩中锂铍“差异跃迁”耦合关联

洪涛1,2(), 翟明国3,4,5,*(), 王岳军1,2, 刘星成5,6, 徐兴旺3,4,5, 高俊3,4,5, 胡明曦1,2, 马靖1,2   

  1. 1.中山大学 地球科学与工程学院 广东省地球动力作用与地质灾害重点实验室, 广东 广州 510275
    2.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
    3.中国科学院大学, 北京 100049
    4.中国科学院 地质与地球物理研究所 中国科学院矿产资源研究重点实验室, 北京 100029
    5.中国科学院 地球科学研究院, 北京 100029
    6.中国科学院 广州地球化学研究所 同位素地球化学国家重点实验室, 广东 广州 510640
  • 收稿日期:2022-12-15 修回日期:2023-01-31 出版日期:2023-09-25 发布日期:2023-10-20
  • 通讯作者: 翟明国
  • 作者简介:洪 涛(1989—),男,副教授,主要从事稀有金属伟晶岩成矿过程解析、战略性关键矿产集成与科普、锂铍金属熔体/残留相实验岩石学研究工作。E-mail: hongt5@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金原创探索项目(42250202);国家自然科学基金重大研究计划集成课题(92162323);广东省引进人才创新创业团队项目“大数据-数学地球科学与极端地质事件”;国家自然科学基金面上项目(42272075);广东省自然科学基金面上项目(2022A1515010003)

Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study

HONG Tao1,2(), ZHAI Mingguo3,4,5,*(), WANG Yuejun1,2, LIU Xingcheng5,6, XU Xingwang3,4,5, GAO Jun3,4,5, HU Mingxi1,2, MA Jing1,2   

  1. 1. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China
    2. Guangdong Southern Marine Science and Engineering Laboratory (Zhuhai), Zhuhai 519082, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. CAS Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    5. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    6. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2022-12-15 Revised:2023-01-31 Online:2023-09-25 Published:2023-10-20
  • Contact: ZHAI Mingguo

摘要:

伟晶岩型锂铍矿床是国家紧缺的战略性金属锂铍的重要供给矿床类型。但伟晶岩成因中深熔作用产生熔体量少、萃取锂铍效率低;岩浆结晶分异能否高度富集和高效萃取锂铍也存在争议;随着富锂铍的硅酸盐熔体、熔体-热液不混溶作用的发现,岩浆不混溶作用可能也是新的成因机制。近年来,针对伟晶岩型锂铍矿床的熔体至热液阶段成矿过程的研究主要集中在:花岗伟晶岩全岩地球化学特征解析;造岩矿物(云母、石英、长石等)与矿石矿物(绿柱石等)的精细微区元素地球化学变化规律的总结;造岩矿物、矿石矿物及副矿物(石榴石等)中熔体-热液包裹体矿物学-地球化学特征解析。但伟晶岩矿床中熔体、流体包裹体类型复杂,且与矿床形成时代也没有明显关联性。

锂铍在熔体-热液相间的分配行为和分配过程,以及运移锂铍的络合物稳定性差异是深入认识锂铍超常富集机制的关键。然而,对锂铍在熔体-热液相间分配行为的研究仍然相对薄弱,针对运移锂铍的络合物的稳定性也未开展研究。我们设计了不同矿化溶液的pH值、不同钙和铝含量影响下锂铍络合物结晶锂铍的实验,发现锂铍元素在以上3种不同条件下存在明显的差异性结晶沉淀行为:(1)pH对铍络合物的稳定性控制比锂络合物更明显;(2)在pH值不变的条件下,铝的加入促进了铍的沉淀,却影响锂的沉淀;(3)钙的加入对锂沉淀的影响没有对铍沉淀的影响大。后续将从实验地球化学角度(高温高压实验模拟)剖析锂铍各自络合物的类型、稳定性受控因素,以期建立“锂、铍络合物失稳-成矿”新机制。

关键词: 锂铍矿床, 熔体-热液, 锂铍络合物稳定性, 差异成矿

Abstract:

Pegmatite lithium (Li)-beryllium (Be) deposits are an important type of strategic Li-Be deposit. However, anatexis, on one hand, only produces a small amount of pegmatite-forming melts while Li/Be extraction efficiency for anatectic pegmatites is low; on the other hand, it is still controversial whether magmatic fractional crystallization results in high Li/Be enrichment in pegmatites and increased extraction efficiency. With the observation of fluid immiscibility in Li/Be-rich silica melt, it suggested that melt-fluid immiscibility may also lead to pegmatite formation. Current studies on the pegmatite Li-Be mineralization processes during the melt-fluid phase mainly focus on the whole-rock geochemical characteristics of granitic pegmatites, the in-situ geochemical changes of the rock-forming minerals (mica, quartz, feldspar, etc.) and ore minerals (beryl, etc.), and the mineralogical and geochemical characteristics of melt/fluid inclusions in petrogenic minerals, ore minerals, and accessory minerals (garnet, etc.). So far no obvious correlation has been found between the depositional age and the types of melt/fluid inclusions. To understand the mechanism of abnormal Li/Be enrichments in pegmatites it is key to study the distribution and stability of Li/Be complexes during the melt-fluid phase, however, the former study is scarce and the latter non-existent. In this study we investigated the effects of pH and calcium/aluminum additions on the stability of Li/Be complexes. We found that (1) the stability of Be complex was more affected by pH compared to Li complex; (2) under constant pH, the addition of aluminum promoted Be but hindered Li precipitations; and (3) the addition of calcium had less effect on Li than on Be precipitations. Future high-temperature, high-pressure experimental simulation studies should further enhance our understanding of the Li/Be enrichment processes and provide a geochemical basis for new Li/Be mineralization models based on the stability of Li/Be complexes.

Key words: Li-Be deposits, melt/fluid inclusions, stability of Li/Be complexes, episodic metallogenic process

中图分类号: