Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 165-181.DOI: 10.13745/j.esf.sf.2025.4.74
Previous Articles Next Articles
FENG Yajie1(), WANG Yongzhi1,2,*(
), DING Zhengjiang3,4, WANG Bin3,4, HE Yunlong5, AN Zhaofeng1, LIU Dehui6
Received:
2025-04-20
Revised:
2025-05-10
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
FENG Yajie, WANG Yongzhi, DING Zhengjiang, WANG Bin, HE Yunlong, AN Zhaofeng, LIU Dehui. The ore-forming model and evolution of prospecting techniques for gold deposits in Jiaoxibei[J]. Earth Science Frontiers, 2025, 32(4): 165-181.
Fig.2 Geological overview of Jiaoxibei. The strata are modified after [28], and the deposits are derived from the Institute of Mineral Resources and [29].
矿床(体) | 金矿石量/t | 金金属量/ (104 kg) | 矿体平均 厚度/m | 平均品位/ 10-6 |
---|---|---|---|---|
三山岛金矿 | 3.34×108 | 124.07 | 8 | 3.72 |
浅部矿体 | 8 150 | 23.85 | 8.1 | 2.93 |
深部矿体 | 2.52×108 | 100.22 | 7.9 | 3.98 |
Table 1 Scale of Sanshandao gold deposit
矿床(体) | 金矿石量/t | 金金属量/ (104 kg) | 矿体平均 厚度/m | 平均品位/ 10-6 |
---|---|---|---|---|
三山岛金矿 | 3.34×108 | 124.07 | 8 | 3.72 |
浅部矿体 | 8 150 | 23.85 | 8.1 | 2.93 |
深部矿体 | 2.52×108 | 100.22 | 7.9 | 3.98 |
矿床(体) | 金矿石量/t | 金金属量/ (104 kg) | 矿体平均 厚度/m | 平均品位/ 10-6 |
---|---|---|---|---|
焦家金矿 | 4.29×108 | 133.44 | 8 | 2.75 |
浅部矿体 | 0.76×108 | 28.49 | 8.8 | 2.89 |
深部矿体 | 3.53×108 | 104.95 | 7.98 | 2.61 |
Table 2 Scale of Jiaojia gold deposit
矿床(体) | 金矿石量/t | 金金属量/ (104 kg) | 矿体平均 厚度/m | 平均品位/ 10-6 |
---|---|---|---|---|
焦家金矿 | 4.29×108 | 133.44 | 8 | 2.75 |
浅部矿体 | 0.76×108 | 28.49 | 8.8 | 2.89 |
深部矿体 | 3.53×108 | 104.95 | 7.98 | 2.61 |
矿床(体) | 金金属量/ (104 kg) | 矿体平均 厚度/m | 平均品位/ 10-6 |
---|---|---|---|
大尹格庄金矿 | 18.3 | ||
浅部矿体 | 11.8 | 10.25 | 2.75 |
深部矿体 | 6.5 | 6.15 | 2.61 |
Table 3 Scale of Dayingezhuang gold deposit
矿床(体) | 金金属量/ (104 kg) | 矿体平均 厚度/m | 平均品位/ 10-6 |
---|---|---|---|
大尹格庄金矿 | 18.3 | ||
浅部矿体 | 11.8 | 10.25 | 2.75 |
深部矿体 | 6.5 | 6.15 | 2.61 |
[1] |
宋英昕, 李胜荣, 申俊峰, 等. 胶东三山岛北部海域金矿床石英热释光和晶胞参数特征及其找矿意义[J]. 地学前缘, 2021, 28(2): 305-319.
DOI |
[2] | 王永庆, 陈磊, 杨真亮, 等. 胶西北焦家-三山岛地区三维地质结构[J]. 山东国土资源, 2024, 40(9): 25-36. |
[3] |
朱平平, 刘岳, 成秋明. 定量确定胶东毕郭地区勘查地球化学异常的分布方向及地质意义[J]. 地学前缘, 2023, 30(2): 440-446.
DOI |
[4] |
李瑞红, 王学求, 迟清华, 等. 胶东水系沉积物金地球化学异常分布规律及其意义[J]. 地学前缘, 2019, 26(4): 221-230.
DOI |
[5] |
吕承训, 张达, 许亚青, 等. 胶东金矿成矿深度的构造校正测算及成矿预测[J]. 地学前缘, 2022, 29(1): 427-438.
DOI |
[6] | 李宏达, 吴志春, 王健策, 等. 胶东招平断裂带北段金矿体三维模型及空间展布特征[J]. 大地构造与成矿学, 2025. |
[7] | 王荣超, 杨晓奇, 杨晓鹏, 等. 夏甸金矿床金红石机器学习成因判别与成矿作用分析[J]. 黄金, 2025, 46(4): 79-84. |
[8] | 张智强, 王功文, 沙德铭, 等. 基于深度学习的辽东半岛五龙金矿集区三维矿产资源定量预测[J/OL]. 地学前缘, (2025-04-30)[2025-05-08]. https://doi.org/10.13745/j.esf.sf.2025.4.50. |
[9] | 杨忠芳, 徐景奎, 赵伦山, 等. 胶东地区地壳演化与金成矿作用地球化学[M]. 北京: 地质出版社, 1998: 1-157. |
[10] | LIU Z K, HOLLINGS P, MAO X C, et al. Metal remobilization from country rocks into the Jiaodong-type orogenic gold systems, eastern China: new constraints from scheelite and galena isotope results at the Xiadian and Majiayao gold deposits[J]. Ore Geology Reviews, 2021, 134: 104126. |
[11] | SONG M C, LI S Z, SANTOSH M, et al. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, eastern North China Craton[J]. Ore Geology Reviews, 2015, 65: 612-625. |
[12] | DENG J, LIU X F, WANG Q F, et al. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686. |
[13] | DENG J, WANG Q F, LIU X F, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica (English Edition), 2022, 96(6): 1801-1820. |
[14] | 李洪志, 吴悦斌. 胶东绿岩型金矿地质地球化学特征[J]. 贵金属地质, 1995, 4(4): 241-246. |
[15] | YAN J, CHEN J F, XIE Z, et al. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: new constraint on the timing of lithospheric thinning in eastern China[J]. Chinese Science Bulletin, 2003, 48(19): 2139-2144. |
[16] | LING W L, XIE X J, LIU X M, et al. Zircon U-Pb dating on the Mesozoic volcanic suite from the Qingshan Group stratotype section in eastern Shandong Province and its tectonic significance[J]. Science in China Series D: Earth Sciences, 2007, 50(6): 813-824. |
[17] | ZHANG Y Q, LI J L, ZHANG T, et al. Cretaceous to Paleocene tectono-sedimentary evolution of the Jiaolai Basin and the contiguous areas of the Shandong Peninsula (North China) and its geodynamic implications[J]. Acta Geologica Sinica (English Edition), 2008, 82(9): 1229-1257. |
[18] | 陈光远, 孙岱生, 邵伟, 等. 胶东郭家岭花岗闪长岩成因矿物学与金矿化[M]. 武汉: 中国地质大学出版社, 1993: 1-230. |
[19] | 李兆龙, 杨敏之. 胶东金矿床地质地球化学[M]. 天津: 天津科学技术出版社, 1993: 1-300. |
[20] | 杨敏之, 吕古贤. 胶东绿岩带金矿地质地球化学[M]. 北京: 地质出版社, 1996: 1-232. |
[21] | 孙丰月, 石准立, 冯本智. 胶东金矿地质及幔源C-H-O流体分异成岩成矿[M]. 长春: 吉林人民出版社, 1995: 1-170. |
[22] | 杨忠芳, 徐景奎. 胶东区域地壳演化与金成矿作用地球化学[M]. 北京: 地质出版社, 1998: 1-157. |
[23] | 杨柳. 山东招远金翅岭金矿岩浆岩与金成矿关系研究[D]. 长沙: 中南大学, 2014. |
[24] | XU J W, ZHU G, TONG W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134(4): 273-310. |
[25] | YANG L Q, DENG J, GOLDFARB R J, et al. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: new implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China[J]. Gondwana Research, 2014, 25(4): 1469-1483. |
[26] | 姜晓辉, 范宏瑞, 胡芳芳, 等. 胶东三山岛金矿中深部成矿流体对比及矿床成因[J]. 岩石学报, 2011, 27(5): 1327-1340. |
[27] | 杨清泉, 李威, 陶晓杰. 三山岛海底金矿地质特征及矿床成因探讨[J]. 黄金科学技术, 2010, 18(3): 5-8. |
[28] | LIU Z K, MAO X C, JEDEMANN A et al. Evolution of pyrite compositions at the Sizhuang gold deposit, Jiaodong Peninsula, eastern China: implications for the genesis of Jiaodong-type orogenic gold mineralization[J]. Minerals, 2021, 11(4): 344. |
[29] | 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9): 1758-1771. |
[30] | LI L, SANTOSH M, LI S R. The ‘Jiaodong type’ gold deposits: characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65: 589-611. |
[31] | 宋明春, 艾宪森, 于学峰, 等. 山东省矿产资源类型和时空分布特点[J]. 矿床地质, 2015, 34(6): 1237-1254. |
[32] | 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. |
[33] | 苗来成, 罗镇宽, 关康, 等. 胶东招掖金矿带控矿断裂演化规律[J]. 地质找矿论丛, 1997(1): 26-35. |
[34] | 张丕建, 宋明春, 刘殿浩, 等. 胶东玲珑金矿田171号脉深部金矿床特征及构造控矿作用[J]. 矿床地质, 2015, 34(5): 855-873. |
[35] | 宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 地质学报, 2015, 89(2): 365-383. |
[36] | 李士先, 王建收. 胶东“玲珑-焦家式”金矿资源潜力与找矿[J]. 山东国土资源, 2006, 22(12): 36-41. |
[37] | 杨金中, 沈远超, 赵玉灵. 层间滑动角砾岩型金矿床的地质特征及形成机制:以山东乳山蓬家夼金矿为例[J]. 黄金科学技术, 1999(3): 15-21. |
[38] | 林少泽, 朱光, 严乐佳, 等. 胶东地区玲珑岩基隆升机制探讨[J]. 地质论评, 2013, 59(5): 832-844. |
[39] | 邵世才. 容矿断裂和含金石英脉的成因机制[J]. 地质与勘探, 1994(5): 18-20. |
[40] | 邵世才, 何绍勋. 剪切带型金矿床中含金石英脉的一种可能成生机制[J]. 大地构造与成矿学, 1994(2): 155-162. |
[41] | 高太忠, 赵伦山, 杨敏之. 山东牟乳金矿带成矿演化机理探讨[J]. 大地构造与成矿学, 2001(2): 155-160. |
[42] | 高太忠, 杨敏之, 金成洙, 等. 山东牟乳石英脉型金矿流体成矿构造动力学研究[J]. 大地构造与成矿学, 1999(2): 131-137. |
[43] | 张欣, 汪雄武, 赵岩, 等. 丹巴燕子沟金矿构造控矿特征分析及成矿机制初探[J]. 有色金属(矿山部分), 2011, 63(3): 19-24. |
[44] |
毛先成, 王迷军, 刘占坤, 等. 基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析[J]. 地学前缘, 2019, 26(4): 84-93.
DOI |
[45] | 徐学思, 胡连英. 东秦岭-大别山-胶东地区基底古构造型式的探讨[J]. 中国区域地质, 1988(1): 44-51. |
[46] | TAO W P. Nonmetallic mineral deposits of China and plate tectonics[J]. Acta Geologica Sinica (English Edition), 1988, 1(4): 407-421. |
[47] | LIU E H. The metallotectonics in eastern Shandong gold metallogenetic province, China[J]. Terra Nova, 1990, 2(3): 257-263. |
[48] | 丁式江, 翟裕生, 邓军. 胶东焦家金矿蚀变岩中元素的质量迁移[J]. 地质与勘探, 2000, (4): 28-31. |
[49] | YANG J H, ZHOU X H. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance[J]. Chinese Science Bulletin, 2000, (24): 2272-2277. |
[50] | ZHAI J P, HU K, LU J J. Genesis and geological-geochemical characters of the Rushan gold deposit, Shandong, China[J]. Chinese Journal of Geochemistry, 1996, 15(3): 203-212. |
[51] | HONG X. Genesis andgeological and geochemical characteristics of Qixia gold deposit, Shandong, China[J]. Chinese Journal of Geochemistry, 1998, 17(4): 338-345. |
[52] | WANG L G, QIU Y M, MCNAUGHTON N J, et al. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J]. Ore Geology Reviews, 1998, 13: 275-291. |
[53] | 鲁安怀, 陈光远. 铬铝云母成因矿物学:兼论焦家式金矿床成因与找矿[M]. 北京: 地质出版社, 1995: 1-125. |
[54] | ZAHNG X, LI H. Study on genesis of gold deposit and mineralization enrichment regularity based on mapping analysis[C]// Proceedings of 2017 IEEE international conference on big data and smart computing. Changsha: IEEE, 2017: 236-239. |
[55] | XUE J L, PANG Z S, CHENG Z Z, et al. Metallogenic regularity and prospecting predictions of gold deposits in China[J]. Geochemistry International, 2019, 57(12): 1276-1294. |
[56] | GUO P, SANTOSH M, LI S R. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24(3/4): 1172-1202. |
[57] | 李志强, 丁正江, 薄军委, 等. 胶莱盆地东北缘郭城金矿床成矿流体特征及矿床成因[J]. 黄金, 2024, 45(5): 57-63. |
[58] | SONG M C, LI S Y, ZHENG J F, et al. A 3D predictive method for deep-seated gold deposits in the northwest Jiaodong Peninsula and predicted results of main metallogenic belts[J]. Minerals, 2022, 12(8): 935. |
[59] | 万国普. 胶东破碎带蚀变岩型金矿地质-地球物理找矿模型[J]. 山东地质, 1994, (2): 41-50. |
[60] | 梁德超, 杨立强, 邓军. 地面高精度磁法测量找寻金矿应用例析[J]. 地球学报, 1999, 20(3): 294-301. |
[61] | QINGDONG Z, YUANCHAO S, TIEBING L, et al. Geophysical exploration for interlayer slip breccia gold deposits: example from Pengjiakuang gold deposit, Shandong Province, China[J]. Geophysical Prospecting, 2004, 52(2): 97-108. |
[62] | 赵海, 赵可广, 马耀丽, 等. 胶东新城金矿地质构造特征及深部找矿方向[J]. 地质力学学报, 2004(2): 129-136. |
[63] | ZHAO P D, CHENG Q M, XIA Q L. Quantitative prediction for deep mineral exploration[J]. Journal of China University of Geosciences, 2008, 19(4): 309-318. |
[64] | SONG M C, WANG H J, LIU H B, et al. Deep characteristics of ore-controlling faults in Jiaoxibei gold deposits and its implications for prospecting: evidence from geophysical surveys[J]. Geology in China, 2024, 51(1): 1-16. |
[65] | 邓浩, 魏运凤, 陈进, 等. 基于注意力卷积神经网络的焦家金矿带三维成矿预测及构造控矿因素定量分析[J]. 中南大学学报(自然科学版), 2021, 52(9): 3003-3014. |
[66] | 郭春影, 张文钊, 葛良胜, 等. 胶东西北部金矿床深部资源潜力与找矿方向[J]. 地质与勘探, 2012, 48(1): 58-67. |
[67] | FAN H R, HU F F, YANG J H, et al. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the Jiaodong Peninsula, eastern China[J]. Geological Society London, Special Publications, 2007, 280: 303-316. |
[68] | TANG J, ZHENG Y F, WU Y B, et al. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J]. Precambrian Research, 2008, 161(3): 389-418. |
[69] | CHEN Y J, PIRAJNO F, QI J P. Origin of gold metallogeny and sources of ore-forming fluids, Jiaodong Province, Eastern China[J]. International Geology Review, 2005, 47(5): 530-549. |
[70] | MAO J W, WANG Y T, LI H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D-O-C-S isotope systematics[J]. Ore Geology Reviews, 2008, 33(3/4): 361-381. |
[71] | LI R H, ALBERT N N, YUN M H, et al. Geological and geochemical characteristics of the Archean basement-hosted gold deposit in Pinglidian, Jiaodong Peninsula, eastern China: constraints on auriferous quartz-vein exploration[J]. Minerals, 2019, 9(1): 62. |
[72] | LI J Z, GONG Q J, YAN T T, et al. Quantitative description of geochemical backgrounds of gold due to rock weathering in Jiaodong Peninsula, China[J]. Journal of Geochemical Exploration, 2018, 192: 155-162. |
[73] | GUO L N, DENG J, YANG L Q, et al. Gold deposition and resource potential of the Linglong gold deposit, Jiaodong Peninsula: geochemical comparison of ore fluids[J]. Ore Geology Reviews, 2020, 120: 103434. |
[74] | YU X F, SHAN W, XIONG Y X, et al. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: a new understanding based on high-resolution reflective seismic survey[J]. Acta Geologica Sinica (English Edition), 2018, 92(5): 1823-1840. |
[75] |
宋英昕, 宋明春, 丁正江, 等. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4-18.
DOI |
[76] | ZHANGS M, HAUNG X F. Promising selection using factor approximate method in the remote sensing interpretation[C]// Proceedings of Igarss’93 - IEEE International Geoscience and Remote Sensing Symposium. Tokyo: IEEE, 1993: 2096-2098. |
[77] | YAN J H; HUI K, CHEN H L, et al. TM image process and interpretation and their application to gold prospecting[C]// Proceedings of 8th thematic conference on geologic remote sensing. Denver: Environmental Research Institute of Michigan, 1991: 973-981. |
[78] | 张廷斌, 钟康惠, 易桂花, 等. 东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测[J]. 地质与勘探, 2009, 45(4): 444-449. |
[79] | 张廷斌, 唐菊兴, 黄丁发. 矿化蚀变信息提取的TM/ETM+遥感影像模式[J]. 遥感信息, 2009, 31(2): 47-51. |
[80] | LIANG S L, WANG J D. Advanced remote sensing: terrestrial information extraction and applications[M]. New York, USA: Academic Press, 2019. |
[81] | DAI J H, XUE L F, SANG X J, et al. Research method for dyke swarms based on UAV remote sensing in desert areas: a case study in Beishan, Gansu, China[J]. IOP Conference Series: Earth and Environmental Science, 2020, 558: 032040. |
[82] | HARFF J, OLEA R A, DAVIS J C, et al. Geostatistical solution for the classification problem with an application to oil prospecting[J]. Geologic Modeling and Mapping, 1996: 263-279. |
[83] | SANDJIVY L. The Factorial Kriging Analysis of Regionalized Data. Its Application to Geochemical Prospecting[M]. Dordrecht: Springer, 1984: 559-571. |
[84] | KRIGE D G. The use of geostatistics in defining and reducing the uncertainty of grade estimates[J]. South African Journal of Geology, 1985, 88(1): 69-72. |
[85] | SARMA D D. Geostatistics with applications in Earth sciences[M]. Dordrecht: Springer Science & Business Media, 2010. |
[86] | VESNAVER A, BRIDLE R, HENRY B, et al. Geostatistical integration of near-surface geophysical data[J]. Geophysical Prospecting, 2006, 54(6): 763-777. |
[87] | PAZ-FERREIRO J, VÁZQUEZ E V, VIEIRA S R. Geostatistical analysis of a geochemical dataset[J]. Bragantia, 2010, 69: 121-129. |
[88] | TABOADA J, VAAMONDE A, SAAVEDRA A, et al. Geostatistical study of the feldspar content and quality of a granite deposit[J]. Engineering Geology, 2002, 65(4): 285-292. |
[89] | WANG S R, YANG L Q, WANG J G, et al. Geostatistical determination of ore shoot plunge and structural control of the Sizhuang world-class epizonal orogenic gold deposit, Jiaodong Peninsula, China[J]. Minerals, 2019, 9(4): 214. |
[90] | LIU Z K, CHEN J, MAO X C, et al. Spatial association between orogenic gold mineralization and structures revealed by 3D prospectivity modeling: a case study of the Xiadian gold deposit, Jiaodong Peninsula, China[J]. Natural Resources Research, 2021, 30(6): 3987-4007. |
[91] | LIU X N, WANG G W, LV J Y, et al. Three-dimensional modeling and geostatistical structural analysis for ore deposit prospecting trend and wisdom mining: a case study in the Jiaoxibei gold field, China[J]. Frontiers in Earth Science, 2024, 12: 1217016. |
[92] | SAMUEL L A. Some studies in machine learning using the game of checkers II: recent progress[J]. IBM Journal of Research and Development, 1967, 11(6): 601-617. |
[93] | WEBB G I. Integrating machine learning with knowledge acquisition through direct interaction with domain experts[J]. Knowledge-Based Systems. 1996, 9(4): 253-266. |
[94] | GAO M, WANG G W, CARRANZA E J M, et al. 3D Au targeting using machine learning with different sample combination and return-risk analysis in the Sanshandao-Cangshang District, Shandong Province, China[J]. Natural Resources Research, 2024, 33(1): 51-74. |
[95] | LIU Z K, GUO Z Y, WANG J L, et al. Three-dimensional mineral prospectivity modeling with the integration of ore-forming computational simulation in the Xiadian gold deposit, eastern China[J]. Applied Sciences, 2023, 13(18): 10277. |
[96] | MAO X C, WANG J L, DENG H, et al. Bayesian decomposition modelling: an interpretable nonlinear approach for mineral prospectivity mapping[J]. Mathematical Geosciences, 2023, 55(7): 897-942. |
[97] | ZHAO H T, ZHANG Y, XU Y B, et al. Machine learning model for deep exploration: utilizing short wavelength infrared (SWIR) of hydrothermal alteration minerals in the Qianchen gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2024, 168: 106060. |
[98] | HAO J, DUAN L, ZHANG Y, et al. Machine learning on white mica short-wave infrared (SWIR) spectral data in the Tengjia Au deposit, Jiaodong Peninsula (eastern China): a prospecting indicator for lode gold deposits[J]. Ore Geology Reviews, 2024, 173: 106230. |
[99] | LI S, CHEN J P, LIU C. Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data[J]. Minerals, 2022, 12(5): 616. |
[100] | YANG B S, ZHOU Z H, et al. Advances in knowledge discovery and data mining[C]// Proceedings of the 16th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2012). Berlin:Springer, 2012. |
[101] | SHARMA P, MUTREJA U. Analysis of satellite images using artificial neural network[J]. International Journal of Soft Computing and Engineering, 2013, 2(6): 276-278. |
[102] | YANG X F, YE Y M, LI X T, et al. Hyperspectral image classification with deep learning models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5408-5423. |
[103] | LEE S, OH H J. Application of artificial neural network for mineral potential mapping[M]// Artificial neural networks-application. Norderstedt: BoD-Books on Demand, 2011: 67-104. |
[104] | 何彬彬, 崔莹, 陈翠华, 等. 基于地质空间数据挖掘的区域成矿预测方法[J]. 地球科学进展, 2011, 26(6): 615-623. |
[105] | FU S, QIU M, SHI L Q, et al. Information fusion and metallogenic prognosis of gold deposits in the Qixia area, northern Shandong Province, China[J]. Minerals, 2023, 13(9): 1125. |
[106] | LIU Z K, YU S Y, DENG H, et al. 3D mineral prospectivity modeling in the Sanshandao goldfield, China using the convolutional neural network with attention mechanism[J]. Ore Geology Reviews, 2024, 164: 105861. |
[107] | DONG Y L, ZHANG Z J. Deep forest modeling: an interpretable deep learning method for mineral prospectivity mapping[J]. Journal of Geophysical Research: Machine Learning and Computation, 2024, 1(4): e2024JH000311. |
[108] | ZHANG Z Q, WANG G W, CARRANZA E J M, et al. An integrated machine learning framework with uncertainty quantification for three-dimensional lithological modeling from multi-source geophysical data and drilling data[J]. Engineering Geology, 2023, 324: 107225. |
[109] | CHEN J, ZUO X, LIU Z K, et al. 3D mineral prospectivity modeling using deep adaptation network transfer learning: a case study of the Xiadian gold deposit, eastern China[J]. Geochemistry, 2024, 84(4): 126189. |
[1] | WANG Bin, ZHOU Mingling, DING Zhengjiang, ZHANG Qibin, LIU Xiangdong, LÜ Junyang, ZHOU Xiaoping. Tectonic controls and 3D deep exploration targeting of altered rock-type gold deposits in the northwestern Jiaodong Peninsula, China [J]. Earth Science Frontiers, 2025, 32(4): 140-154. |
[2] | LI Bowen, WANG Yongzhi, DING Zhengjiang, WANG Bin, WEN Shibo, DONG Yuhao, JI Zheng. Intelligent search technology for Jiaodong gold deposits based on large models and GraphRAG [J]. Earth Science Frontiers, 2025, 32(4): 155-164. |
[3] | JIAN Fuyuan, ZHANG Ziming, DONG Yuelin, ZHANG Wenjing, HAO Fengyun, WANG Yiming, WANG Yu, ZHANG Zhenjie. Multifractal analysis and random forest algorithm for mineral prospecting in the Habahe gold deposit, Xinjiang [J]. Earth Science Frontiers, 2025, 32(4): 78-94. |
[4] | WANG Yeming, LEI Wanshan, ZHANG Haidong, WANG Teng, ZHAO Bo, TIAN Honghao. Petrographic and geochronological studies of albite granite and diorite porphyry in the Yinggezhuang gold deposit, Jiaodong Peninsula: Implications for multi-stage gold mineralization events [J]. Earth Science Frontiers, 2025, 32(4): 405-421. |
[5] | ZHANG Xiaofei, TANG Xiangwei, PANG Zhenshan, XUE Jianling, CHEN Hui, WANG Junlu, WEI Hantao, LEI Xiaoli. Comprehensive information model construction and target area prediction for gold prospecting in the Weishancheng area, Tongbai County, Henan [J]. Earth Science Frontiers, 2025, 32(2): 357-370. |
[6] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[7] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[8] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[9] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[10] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[11] | JIAO Yanjie, HUANG Xuri, LI Guangming, FU Jiangang, LIANG Shengxian, GUO Jing. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 255-264. |
[12] | ZHU Pingping, LIU Yue, CHENG Qiuming. Quantitative determinations of the dispersion pattern and geological significance of geochemical anomalies in Biguo area, Jiaodong Terrane [J]. Earth Science Frontiers, 2023, 30(2): 440-446. |
[13] | LÜ Chengxun, ZHANG Da, XU Yaqing, GUO Tao, WANG Zongyong, HUO Qinglong, YUAN Yuelei. Calculation of metallogenic depth in the Jiaodong gold deposits: Tectonic correction method and metallogenic prediction [J]. Earth Science Frontiers, 2022, 29(1): 427-438. |
[14] | QIN Kezhang, ZHAO Junxing, FAN Hongrui, TANG Dongmei, LI Guangming, YU Kelong, CAO Mingjian, SU Benxun. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 271-294. |
[15] | SONG Yingxin, LI Shengrong, SHEN Junfeng, ZHANG Long, LI Wentao, ZENG Yongjie. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(2): 305-319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||