Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 418-428.DOI: 10.13745/j.esf.sf.2022.9.4
Previous Articles Next Articles
YU Shi1,2(), PU Junbing3,*(
), LIU Fan1,2, YANG Hui1,2
Received:
2022-05-24
Revised:
2022-07-31
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems-a critical review[J]. Earth Science Frontiers, 2023, 30(4): 418-428.
[1] | TANG X L, ZHAO X, BAI Y F, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4021-4026. |
[2] |
HARRIS N L, GIBBS D A, BACCINI A, et al. Global maps of twenty-first century forest carbon fluxes[J]. Nature Climate Change, 2021, 11(3): 234-240.
DOI |
[3] |
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988-993.
DOI URL |
[4] |
PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013.
DOI |
[5] |
FANG J Y, CHEN A P, PENG C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322.
DOI PMID |
[6] |
GURNEY K R, ECKELS W J. Regional trends in terrestrial carbon exchange and their seasonal signatures[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(3): 328-339.
DOI URL |
[7] | 曾思博, 蒋勇军. 土地利用对岩溶作用碳汇的影响研究综述[J]. 中国岩溶, 2016, 35(2): 153-163. |
[8] | 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371. |
[9] |
LIU Z H, DREYBRODT W H J. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191.
DOI URL |
[10] |
DONG X L, COHEN M J, MARTIN J B, et al. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape[J]. Chemical Geology, 2019, 527: 118774.
DOI URL |
[11] |
ZHAOR Y, LIU Z Q, HUANG H, et al. Difference in the relationship between soil CO2 concentration and the karst-related carbon cycle under different land use types in Southwest China[J]. Carbonates and Evaporites, 2019, 34(4): 1569-1581.
DOI |
[12] |
LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
DOI URL |
[13] | 刘方, 王世杰, 罗海波, 等. 喀斯特石漠化过程中植被演替及其对径流水化学的影响[J]. 土壤学报, 2006, 43(1): 26-32. |
[14] | 章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26): 2174-2180. |
[15] | 章程, 李玉辉, 汪进良, 等. 云南石林地质公园土岩、土根界面过程和土下溶蚀速率[J]. 地质论评, 2020, 66(4): 1019-1030. |
[16] | 周孟霞, 莫碧琴, 杨慧. 岩溶石漠化区李树林土壤岩溶作用强度及碳汇效应[J]. 农业工程学报, 2020, 36(13): 116-123. |
[17] |
LIU Z H, ZHAO J B. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9): 1053-1058.
DOI URL |
[18] | 姜光辉, 张强. 峰丛洼地自然封育过程岩溶水溶解无机碳的变化: 以桂林丫吉试验场为例[J]. 中国岩溶, 2011, 30(4): 397-402. |
[19] | 何师意, 徐胜友, 张美良. 岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J]. 中国岩溶, 1997, 16(4): 319-324. |
[20] | 刘九缠, 孙玉川, 沈立成, 等. 石漠化治理对土壤中CO2、CH4变化特征及碳汇效应的影响[J]. 中国岩溶, 2018, 37(5): 733-741. |
[21] | 刘长礼, 林良俊, 宋超, 等. 土地利用变化对典型碳酸盐岩流域风化碳汇的影响: 以云南小江岩溶流域研究为例[J]. 中国地质, 2011, 38(2): 479-488. |
[22] |
SIGLER W V, BACHOFEN R, ZEYER J. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland[J]. Environmental Microbiology, 2003, 5(7): 618-627.
PMID |
[23] |
TANG Y, LIAN B, DONG H L, et al. Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang canyon in Guizhou karst area (China)[J]. Geomicrobiology Journal, 2012, 29(3): 213-225.
DOI URL |
[24] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172.
DOI URL |
[25] |
LIU Z H, DREYBROD W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O + CO2 → H+ + HCO3-[J]. Geochimica et Cosmochimica Acta, 1997, 61(14): 2879-2889.
DOI URL |
[26] | 李为, 余龙江, 袁道先, 等. 不同岩溶生态系统土壤及其细菌碳酸酐酶的活性分析及生态意义[J]. 生态学报, 2004, 24(3): 438-443. |
[27] |
WANG C W, LI W, SHEN T M, et al. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area[J]. Geoderma, 2018, 313: 17-24.
DOI URL |
[28] | 范周周, 卢舒瑜, 李志茹, 等. 岩溶与非岩溶地区不同林分根际土壤微生物对碳酸盐岩的溶蚀作用[J]. 应用与环境生物学报, 2018, 24(4): 751-757. |
[29] |
SHEN T M, LI W, PAN W Z, et al. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017, 123: 66-74.
DOI URL |
[30] | 李强, 何媛媛, 曹建华, 等. 植物碳酸酐酶对岩溶作用的影响及其生态效应[J]. 生态环境学报, 2011, 20(12): 1867-1871. |
[31] |
HU H H, BOISSON-DERNIER A, ISRAELSSON-NORDSTRÖM M, et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells[J]. Nature Cell Biology, 2010, 12(1): 87-93.
DOI PMID |
[32] | 吴沿友, 梁铮, 邢德科. 模拟干旱胁迫下构树和桑树的生理特征比较[J]. 广西植物, 2011, 31(1): 92-96. |
[33] |
NZUNG’A S O, PAN W Z, SHEN T M, et al. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River Basin and its ecological significance[J]. Journal of Environmental Sciences, 2018, 66: 173-181.
DOI PMID |
[34] | 姜鑫, 黄先飞, 秦樊鑫, 等. 不同土地利用方式下喀斯特地区岩石溶蚀速率及其驱动因素[J]. 云南农业大学学报(自然科学), 2020, 35(5): 899-905. |
[35] | 陶于祥, 潘根兴, 孙玉华, 等. 土壤有机碳地球化学及其与岩溶作用的关系: 以桂林丫吉村岩溶试验场为例[J]. 火山地质与矿产, 1998, 19(1): 40-46. |
[36] | 黄奇波, 覃小群, 刘朋雨, 等. 半干旱岩溶区土壤次生碳酸盐比例及对岩溶碳汇计算的影响[J]. 中国岩溶, 2016, 35(2): 164-172. |
[37] | 邵明玉, 张连凯, 刘朋雨, 等. 黄土区典型小流域矿物化学风化及碳汇效应[J]. 地球与环境, 2019, 47(5): 575-585. |
[38] |
NYACHOTI S, JIN L X, TWEEDIE C E, et al. Insight into factors controlling formation rates of pedogenic carbonates:a combined geochemical and isotopic approach in dryland soils of the US Southwest[J]. Chemical Geology, 2019, 527: 118503.
DOI URL |
[39] | 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理[J]. 生态学报, 2003, 23(5): 972-978. |
[40] |
GISLASON S R, OELKERS E H, EIRIKSDOTTIR E S, et al. Direct evidence of the feedback between climate and weathering[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 213-222.
DOI URL |
[41] |
HAGEDORN B, CARTWRIGHT I. Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: an example from the Australian Victorian Alps[J]. Chemical Geology, 2009, 260(3/4): 234-253.
DOI URL |
[42] |
TIPPER E T, BICKLE M J, GALY A, et al. The short term climatic sensitivity of carbonate and silicate weathering fluxes:insight from seasonal variations in river chemistry[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2737-2754.
DOI URL |
[43] |
ZENG C, LIU Z H, YANG J W, et al. A groundwater conceptual model and karst-related carbon sink for a glacierized alpine karst aquifer, southwestern China[J]. Journal of Hydrology, 2015, 529: 120-133.
DOI URL |
[44] | 李汇文, 王世杰, 白晓永, 等. 气候变化及生态恢复对喀斯特槽谷碳酸盐岩风化碳汇的影响评估[J]. 生态学报, 2019, 39(16): 6158-6172. |
[45] | 康志强, 何师意. 表层岩溶系统碳迁移路径及其土被效应探讨[J]. 中国岩溶, 2011, 30(4): 456-460. |
[46] |
ZENG S B, LIU Z H, KAUFMANN G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes[J]. Nature Communications, 2019, 10: 5749.
DOI PMID |
[47] |
ZENG S B, LIU Z H, GOLDSCHEIDER N, et al. Comparisons on the effects of temperature,runoff, and land-cover on carbonate weathering in different karst catchments: insights into the future global carbon cycle[J]. Hydrogeology Journal, 2021, 29(1): 331-345.
DOI |
[48] |
ZENG C, LIU Z H, ZHAO M, et al. Hydrologically-driven variations in the karst-related carbon sink fluxes: insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533: 74-90.
DOI URL |
[49] | 曾成, 赵敏, 杨睿, 等. 贵州典型岩溶流域水循环驱动的岩溶碳汇通量及其主控因素分析[J]. 地球与环境, 2017, 45(1): 74-83. |
[50] | 何师意, 康志强, 李清艳, 等. 高分辨率实时监测技术在岩溶碳汇估算中的应用: 以板寨地下河监测站为例[J]. 气候变化研究进展, 2011, 7(3): 157-161. |
[51] | 肖时珍. 亚热带典型白云岩流域化学剥蚀速率及碳汇潜力: 以贵州施秉杉木河流域为例[D]. 重庆: 西南大学, 2017. |
[52] |
KANG Z Q, CHEN J, YUAN D X, et al. Promotion function of forest vegetation on the waterand carbon coupling cycle in karst critical zone: insights from karst groundwater systems in south China[J]. Journal of Hydrology, 2020, 590: 125246.
DOI URL |
[53] | 石培礼, 李文华. 森林植被变化对水文过程和径流的影响效应[J]. 自然资源学报, 2001, 16(5): 481-487. |
[54] | 陈军锋, 李秀彬. 森林植被变化对流域水文影响的争论[J]. 自然资源学报, 2001, 16(5): 474-480. |
[55] | 魏晓华, 李文华, 周国逸, 等. 森林与径流关系: 一致性和复杂性[J]. 自然资源学报, 2005, 20(5): 761-770. |
[56] | 王世杰, 刘再华, 倪健, 等. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9. |
[57] | 姜光辉, 郭芳. 岩溶水柜集流坡面的径流模式和调控建议[J]. 水科学进展, 2021, 32(2): 271-278. |
[58] | 蒋忠诚, 袁道先. 表层岩溶带的岩溶动力学特征及其环境和资源意义[J]. 地球学报, 1999, 20(3): 302-308. |
[59] | 蒋忠诚, 王瑞江, 裴建国, 等. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2): 106-110. |
[60] |
LYU Y N, LUO W J, WANG Y W, et al. Geochemical responses of cave drip water to vegetation restoration[J]. Journal of Hydrology, 2020, 590: 125543.
DOI URL |
[61] |
DENG Y, WU S, KE J, et al. Effects of meteorological factors and groundwater depths on plant sap flow velocities in karst critical zone[J]. Science of the Total Environment, 2021, 781: 146764.
DOI URL |
[62] |
曾成, 刘再华. 建设岩溶水-碳通量大型模拟试验场的构想[J]. 资源环境与工程, 2013, 27(2): 196-200, 221.
DOI |
[63] | 朱辉, 曾成, 刘再华, 等. 岩溶作用碳汇强度变化的土地利用调控规律: 贵州普定岩溶水-碳通量大型模拟试验场研究[J]. 水文地质工程地质, 2015, 42(6): 120-125. |
[64] |
JACKSON R B, JOBBA'GY E G, AVISSAR R, et al. Trading water for carbon with biological carbon sequestration[J]. Science, 2005, 310(5756): 1944-1947.
DOI PMID |
[65] |
SCANLON B R, REEDY R C, STONESTROM D A, et al. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US[J]. Global Change Biology, 2005, 11(10): 1577-1593.
DOI URL |
[66] |
ZHANG Y K, SCHILLING K E. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis[J]. Journal of Hydrology, 2006, 319(1/2/3/4): 328-338.
DOI URL |
[67] |
ROMERO-MUJALLI G, HARTMANN J, BÖRKER J, et al. Ecosystem controlled soil-rock pCO2 and carbonate weathering: constraints by temperature and soil water content[J]. Chemical Geology, 2019, 527: 118634.
DOI URL |
[68] |
ZENG Q R, LIU Z H, CHEN B, et al. Carbonate weathering-related carbon sink fluxes under different land uses: a case study from the Shawan Simulation Test Site, Puding, Southwest China[J]. Chemical Geology, 2017, 474: 58-71.
DOI URL |
[69] |
吴泽燕, 章程, 蒋忠诚, 等. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
DOI |
[70] | 吕玉香, 蒋勇军, 王正雄, 等. 西南岩溶槽谷区隧道建设的水文生态环境效应研究进展[J]. 生态学报, 2020, 40(6): 1851-1864. |
[71] |
苏樑, 宋同清, 杜虎, 等. 喀斯特峰丛洼地不同植被恢复阶段细根生物量、形态特征及其影响因素[J]. 应用生态学报, 2018, 29(3): 783-789.
DOI |
[72] | 蒙吉军, 王钧. 20世纪80年代以来西南喀斯特地区植被变化对气候变化的响应[J]. 地理研究, 2007, 26(5): 857-865, 1069. |
[73] |
NI J, LUO D H, XIA J, et al. Vegetation in karst terrain of southwestern China allocates more biomass to roots[J]. Solid Earth, 2015, 6(3): 799-810.
DOI URL |
[74] |
TONG X W, BRANDT M, YUE Y M, et al. Increased vegetation growth and carbon stock in China karst via ecological engineering[J]. Nature Sustainability, 2018, 1(1): 44-50.
DOI |
[75] |
XU X J, LIU H Y, LIN Z S, et al. Relationship of abrupt vegetation change to climate change and ecological engineering with multi-timescale analysis in the karst region, Southwest China[J]. Remote Sensing, 2019, 11(13): 1564.
DOI URL |
[76] | 刘立斌, 周运超, 程安云, 等. 利用皆伐法估算黔中喀斯特森林地上生物量[J]. 生态学报, 2020, 40(13): 4455-4461. |
[1] | ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland [J]. Earth Science Frontiers, 2024, 31(6): 436-449. |
[2] | YUAN Yaqiong, SUN Ping’an, YU Shi, HE Shiyi. Fractionation of stable isotopes and the carbon-water cycle in Yangtze River [J]. Earth Science Frontiers, 2024, 31(5): 409-420. |
[3] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[4] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[5] | SUN Huanquan, MAO Xiang, WU Chenbingjie, GUO Dianbin, WANG Haitao, SUN Shaochuan, ZHANG Ying, LUO Lu. Geothermal resources exploration and development technology: Current status and development directions [J]. Earth Science Frontiers, 2024, 31(1): 400-411. |
[6] | LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods [J]. Earth Science Frontiers, 2022, 29(5): 285-299. |
[7] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
[8] | ZHU Liang, LIU Jingtao, ZHANG Yuxi, LIU Dandan, JIAO Shizhe. Evaluation of water resource multiple effect based on the analysis of water circulation: An example of the Beichuan River Basin upstream of the Yellow River [J]. Earth Science Frontiers, 2022, 29(3): 263-270. |
[9] | LIU Yanhui, YANG Xiaoyu, BAO Nisha, GU Xiaowei. Estimating biomass of reclaimed vegetation in prairie mining area: Inversion method based on Worldview-3 and Sentinel-1 SAR data [J]. Earth Science Frontiers, 2021, 28(4): 219-228. |
[10] | ZHAO Bingqing, BAI Zhongke, GUO Donggang, CAO Yingui. The undergrowth developmental dynamics of plantations in an open-pit coal mine waste dump in loess area [J]. Earth Science Frontiers, 2021, 28(4): 153-164. |
[11] | ZHANG Junjie, BAI Zhongke, YANG Boyu. Gravel curtain layer in the desert open-pit mining area of Xinjiang: Ecological damage and reconstruction method [J]. Earth Science Frontiers, 2021, 28(4): 142-152. |
[12] | YUAN Tao, NI Xuan, ZHOU Wei. Spatio-temporal impact and the scope of vegetation disturbance from coal mining: A case of the Ningdong mining district [J]. Earth Science Frontiers, 2021, 28(4): 110-117. |
[13] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[14] | LI Qingxu,ZHANG Biao,WANG Shuang,XIE Gaodi. Regional differences of vegetation cover in the BeijingTianjin sandstorm source region from 2000 to 2015 [J]. Earth Science Frontiers, 2018, 25(5): 298-304. |
[15] | CHEN Ting LIANG Si-Hai JIAN Kai-Zhu MO Li. Regularity and cause of vegetation coverage changes in the headwaters of the Changjiang River over the last 22 years. [J]. Earth Science Frontiers, 2008, 15(6): 323-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||