Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (4): 153-164.DOI: 10.13745/j.esf.sf.2020.10.18
Previous Articles Next Articles
ZHAO Bingqing1(), BAI Zhongke2,3,4,*(
), GUO Donggang5, CAO Yingui2,3,4
Received:
2020-09-03
Revised:
2020-11-22
Online:
2021-07-25
Published:
2021-07-25
Contact:
BAI Zhongke
CLC Number:
ZHAO Bingqing, BAI Zhongke, GUO Donggang, CAO Yingui. The undergrowth developmental dynamics of plantations in an open-pit coal mine waste dump in loess area[J]. Earth Science Frontiers, 2021, 28(4): 153-164.
物种 | 重要值IV/% | ||
---|---|---|---|
复垦17年 | 复垦22年 | 原地貌 | |
榆树Ulmus pumila | 4.79 | ||
花苜蓿Medicago ruthenica | 7.18 | ||
草木樨状黄耆Astragalus melilotoides | 16.93 | ||
胡枝子Lespedeza bicolor | 6.16 | ||
兴安胡枝子Lespedeza daurica | 4.20 | ||
沙枣Elaeagnus angustifolia | 4.15 | ||
香青兰Dracocephalum moldavica | 6.68 | ||
百里香Thymus mongolicus | 4.02 | ||
大籽蒿Artemisia sieversiana | 32.52 | 6.05 | |
黄花蒿Artemisia annua | 14.97 | ||
白莲蒿Artemisia sacrorum | 4.05 | 4.55 | |
莳萝蒿Artemisia anethoides | 2.45 | ||
艾Artemisia argyi | 3.78 | ||
草地风毛菊Saussurea amara | 1.90 | ||
风毛菊Saussurea japonica | 9.66 | ||
披碱草Elymus dahuricus | 12.68 | 6.69 | |
鹅观草Roegneria kamoji | 9.04 | 23.84 | |
无芒雀麦Bromus inermis | 1.77 | 4.66 | |
硬质早熟禾Poa sphondylodes | 7.67 | 4.13 | |
针茅Stipa capillata | 3.79 | 6.72 | |
戈壁针茅Stipa tianschanica var. gobica | 1.95 | ||
白茅Imperata cylindrica | 3.33 | ||
披针薹草Carex lancifolia | 9.49 |
Table 1 Top 10 herbaceous plants by important value
物种 | 重要值IV/% | ||
---|---|---|---|
复垦17年 | 复垦22年 | 原地貌 | |
榆树Ulmus pumila | 4.79 | ||
花苜蓿Medicago ruthenica | 7.18 | ||
草木樨状黄耆Astragalus melilotoides | 16.93 | ||
胡枝子Lespedeza bicolor | 6.16 | ||
兴安胡枝子Lespedeza daurica | 4.20 | ||
沙枣Elaeagnus angustifolia | 4.15 | ||
香青兰Dracocephalum moldavica | 6.68 | ||
百里香Thymus mongolicus | 4.02 | ||
大籽蒿Artemisia sieversiana | 32.52 | 6.05 | |
黄花蒿Artemisia annua | 14.97 | ||
白莲蒿Artemisia sacrorum | 4.05 | 4.55 | |
莳萝蒿Artemisia anethoides | 2.45 | ||
艾Artemisia argyi | 3.78 | ||
草地风毛菊Saussurea amara | 1.90 | ||
风毛菊Saussurea japonica | 9.66 | ||
披碱草Elymus dahuricus | 12.68 | 6.69 | |
鹅观草Roegneria kamoji | 9.04 | 23.84 | |
无芒雀麦Bromus inermis | 1.77 | 4.66 | |
硬质早熟禾Poa sphondylodes | 7.67 | 4.13 | |
针茅Stipa capillata | 3.79 | 6.72 | |
戈壁针茅Stipa tianschanica var. gobica | 1.95 | ||
白茅Imperata cylindrica | 3.33 | ||
披针薹草Carex lancifolia | 9.49 |
生活型 | 复垦17年 | 复垦22年 | 原地貌 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种数 | 重要值IV/% | 种数 | 重要值IV/% | 种数 | 重要值IV/% | ||||||
1年生草本 | 8 | 15.98 | 6 | 5.31 | 5 | 7.51 | |||||
1-2年生草本 | 9 | 37.71 | 7 | 9.00 | 2 | 0.48 | |||||
2年生草本 | 2 | 0.80 | 2 | 9.75 | 1 | 2.03 | |||||
多年生草本 | 34 | 43.77 | 31 | 66.23 | 33 | 78.80 | |||||
藤本 | 1 | 0.03 | |||||||||
灌木 | 4 | 0.27 | 3 | 0.32 | 3 | 11.19 | |||||
乔木 | 4 | 1.44 | 4 | 9.39 |
Table 2 Life form of herbaceous plants
生活型 | 复垦17年 | 复垦22年 | 原地貌 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种数 | 重要值IV/% | 种数 | 重要值IV/% | 种数 | 重要值IV/% | ||||||
1年生草本 | 8 | 15.98 | 6 | 5.31 | 5 | 7.51 | |||||
1-2年生草本 | 9 | 37.71 | 7 | 9.00 | 2 | 0.48 | |||||
2年生草本 | 2 | 0.80 | 2 | 9.75 | 1 | 2.03 | |||||
多年生草本 | 34 | 43.77 | 31 | 66.23 | 33 | 78.80 | |||||
藤本 | 1 | 0.03 | |||||||||
灌木 | 4 | 0.27 | 3 | 0.32 | 3 | 11.19 | |||||
乔木 | 4 | 1.44 | 4 | 9.39 |
生态型 | 复垦17年 | 复垦22年 | 原地貌 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种数 | 重要值IV/% | 种数 | 重要值IV/% | 种数 | 重要值IV/% | ||||||
旱生植物 | 7 | 10.52 | 10 | 22.01 | 8 | 15.38 | |||||
中旱生植物 | 8 | 6.09 | 3 | 8.05 | 9 | 35.04 | |||||
旱中生植物 | 7 | 1.87 | 7 | 6.10 | 4 | 6.85 | |||||
中生植物 | 40 | 81.52 | 33 | 63.84 | 23 | 42.73 |
Table 3 Water ecotypes of herbaceous plants
生态型 | 复垦17年 | 复垦22年 | 原地貌 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种数 | 重要值IV/% | 种数 | 重要值IV/% | 种数 | 重要值IV/% | ||||||
旱生植物 | 7 | 10.52 | 10 | 22.01 | 8 | 15.38 | |||||
中旱生植物 | 8 | 6.09 | 3 | 8.05 | 9 | 35.04 | |||||
旱中生植物 | 7 | 1.87 | 7 | 6.10 | 4 | 6.85 | |||||
中生植物 | 40 | 81.52 | 33 | 63.84 | 23 | 42.73 |
多样性指数 | 复垦17年 | 复垦22年 | 原地貌 |
---|---|---|---|
Patrick (R) | 62 | 53 | 44 |
Shannon-Wiener (H') | 2.44 | 2.88 | 3.06 |
Pielou (E) | 0.59 | 0.72 | 0.81 |
Table 4 Biodiversity of herbaceous plants
多样性指数 | 复垦17年 | 复垦22年 | 原地貌 |
---|---|---|---|
Patrick (R) | 62 | 53 | 44 |
Shannon-Wiener (H') | 2.44 | 2.88 | 3.06 |
Pielou (E) | 0.59 | 0.72 | 0.81 |
复垦年 限/年 | 方差比 率VR | 检验统 计量 | ( | 关联性 |
---|---|---|---|---|
17 | 0.80 | 319.77 | (354.64, 447.63) | 显著负关联 |
22 | 0.97 | 388.51 | (354.64, 447.63) | 负关联 |
Table 5 Overall association among herbaceous plant communities
复垦年 限/年 | 方差比 率VR | 检验统 计量 | ( | 关联性 |
---|---|---|---|---|
17 | 0.80 | 319.77 | (354.64, 447.63) | 显著负关联 |
22 | 0.97 | 388.51 | (354.64, 447.63) | 负关联 |
物种代号 | 各植物种间Spearman秩相关系数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
1 | 1.000 | |||||||||||||||
2 | 0.063 | 1.000 | ||||||||||||||
3 | -0.299** | -0.406** | 1.000 | |||||||||||||
4 | -0.124* | -0.036 | -0.363** | 1.000 | ||||||||||||
5 | -0.189** | -0.097 | 0.034 | -0.112* | 1.000 | |||||||||||
6 | 0.171** | -0.033 | -0.099* | -0.182** | 0.060 | 1.000 | ||||||||||
7 | 0.097 | 0.189** | -0.188** | -0.018 | -0.022 | 0.060 | 1.000 | |||||||||
8 | 0.093 | 0.160** | -0.109* | -0.173** | -0.027 | -0.179** | 0.194** | 1.000 | ||||||||
9 | -0.032 | -0.049 | -0.061 | 0.102* | -0.020 | -0.083 | -0.014 | 0.032 | 1.000 | |||||||
10 | -0.127* | -0.057 | -0.079 | -0.078 | -0.058 | -0.035 | -0.090 | -0.055 | 0.090 | 1.000 | ||||||
11 | -0.089 | -0.166** | 0.090 | -0.086 | 0.052 | -0.097 | -0.011 | 0.047 | -0.006 | -0.014 | 1.000 | |||||
12 | 0.064 | 0.004 | -0.094 | -0.042 | -0.037 | -0.096 | 0.039 | 0.116* | -0.128* | -0.063 | 0.078 | 1.000 | ||||
13 | -0.062 | -0.047 | -0.127* | -0.012 | -0.007 | -0.007 | -0.093 | 0.018 | -0.067 | -0.001 | 0.033 | 0.040 | 1.000 | |||
14 | -0.006 | -0.015 | -0.196** | 0.165** | -0.065 | -0.048 | -0.108* | -0.111* | 0.012 | 0.023 | -0.061 | -0.039 | 0.021 | 1.000 | ||
15 | 0.089 | -0.077 | 0.005 | -0.162** | 0.098 | 0.120* | -0.085 | 0.015 | -0.043 | -0.037 | -0.045 | -0.025 | 0.011 | 0.006 | 1.000 |
Table 6 Spearman’s rank coefficients of the 15 main herbaceous species after 17 years of reclamation
物种代号 | 各植物种间Spearman秩相关系数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
1 | 1.000 | |||||||||||||||
2 | 0.063 | 1.000 | ||||||||||||||
3 | -0.299** | -0.406** | 1.000 | |||||||||||||
4 | -0.124* | -0.036 | -0.363** | 1.000 | ||||||||||||
5 | -0.189** | -0.097 | 0.034 | -0.112* | 1.000 | |||||||||||
6 | 0.171** | -0.033 | -0.099* | -0.182** | 0.060 | 1.000 | ||||||||||
7 | 0.097 | 0.189** | -0.188** | -0.018 | -0.022 | 0.060 | 1.000 | |||||||||
8 | 0.093 | 0.160** | -0.109* | -0.173** | -0.027 | -0.179** | 0.194** | 1.000 | ||||||||
9 | -0.032 | -0.049 | -0.061 | 0.102* | -0.020 | -0.083 | -0.014 | 0.032 | 1.000 | |||||||
10 | -0.127* | -0.057 | -0.079 | -0.078 | -0.058 | -0.035 | -0.090 | -0.055 | 0.090 | 1.000 | ||||||
11 | -0.089 | -0.166** | 0.090 | -0.086 | 0.052 | -0.097 | -0.011 | 0.047 | -0.006 | -0.014 | 1.000 | |||||
12 | 0.064 | 0.004 | -0.094 | -0.042 | -0.037 | -0.096 | 0.039 | 0.116* | -0.128* | -0.063 | 0.078 | 1.000 | ||||
13 | -0.062 | -0.047 | -0.127* | -0.012 | -0.007 | -0.007 | -0.093 | 0.018 | -0.067 | -0.001 | 0.033 | 0.040 | 1.000 | |||
14 | -0.006 | -0.015 | -0.196** | 0.165** | -0.065 | -0.048 | -0.108* | -0.111* | 0.012 | 0.023 | -0.061 | -0.039 | 0.021 | 1.000 | ||
15 | 0.089 | -0.077 | 0.005 | -0.162** | 0.098 | 0.120* | -0.085 | 0.015 | -0.043 | -0.037 | -0.045 | -0.025 | 0.011 | 0.006 | 1.000 |
物种代号 | 各植物种间Spearman秩相关系数 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | ||
1 | 1.000 | |||||||||||||||||
2 | -0.089 | 1.000 | ||||||||||||||||
3 | -0.273** | -0.057 | 1.000 | |||||||||||||||
4 | -0.288** | -0.031 | -0.032 | 1.000 | ||||||||||||||
5 | -0.250** | 0.026 | 0.092 | 0.075 | 1.000 | |||||||||||||
6 | -0.126* | -0.073 | -0.014 | 0.123* | 0.083 | 1.000 | ||||||||||||
7 | -0.132** | -0.051 | -0.116* | -0.124* | -0.036 | -0.065 | 1.000 | |||||||||||
8 | -0.030 | -0.010 | -0.023 | -0.009 | -0.101* | 0.007 | 0.048 | 1.000 | ||||||||||
9 | -0.092 | -0.170** | 0.171** | -0.179** | 0.005 | -0.203** | -0.023 | -0.138** | 1.000 | |||||||||
10 | -0.184** | -0.005 | 0.071 | -0.031 | -0.046 | -0.067 | -0.095 | -0.065 | 0.248** | 1.000 | ||||||||
11 | 0.020 | -0.067 | 0.078 | 0.021 | 0.097 | -0.052 | -0.095 | 0.020 | 0.022 | -0.019 | 1.000 | |||||||
12 | -0.097 | 0.017 | -0.027 | -0.086 | 0.014 | -0.010 | -0.085 | -0.022 | -0.019 | -0.025 | 0.141** | 1.000 | ||||||
13 | -0.137** | -0.101* | 0.094 | -0.027 | -0.010 | -0.011 | -0.081 | -0.087 | 0.409** | 0.174** | -0.017 | 0.041 | 1.000 | |||||
14 | -0.129** | -0.023 | 0.130** | -0.040 | 0.020 | 0.036 | -0.041 | 0.001 | 0.109* | 0.068 | -0.029 | 0.151** | 0.117* | 1.000 | ||||
15 | -0.145** | 0.036 | 0.071 | -0.029 | 0.038 | 0.057 | -0.067 | -0.087 | 0.096 | 0.148** | 0.057 | 0.000 | 0.088 | 0.009 | 1.000 | |||
16 | 0.084 | -0.228** | 0.059 | -0.032 | 0.033 | -0.061 | -0.045 | -0.050 | -0.085 | -0.093 | 0.022 | -0.106* | -0.112* | -0.096 | -0.049 | 1.000 | ||
17 | -0.144** | -0.021 | -0.013 | 0.161** | 0.097 | 0.074 | -0.073 | -0.002 | -0.102* | -0.002 | 0.069 | -0.064 | -0.121* | -0.054 | 0.053 | 0.162** | 1.000 |
Table 7 Spearman’s rank coefficients of the 17 main herbaceous species after 22 years of reclamation
物种代号 | 各植物种间Spearman秩相关系数 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | ||
1 | 1.000 | |||||||||||||||||
2 | -0.089 | 1.000 | ||||||||||||||||
3 | -0.273** | -0.057 | 1.000 | |||||||||||||||
4 | -0.288** | -0.031 | -0.032 | 1.000 | ||||||||||||||
5 | -0.250** | 0.026 | 0.092 | 0.075 | 1.000 | |||||||||||||
6 | -0.126* | -0.073 | -0.014 | 0.123* | 0.083 | 1.000 | ||||||||||||
7 | -0.132** | -0.051 | -0.116* | -0.124* | -0.036 | -0.065 | 1.000 | |||||||||||
8 | -0.030 | -0.010 | -0.023 | -0.009 | -0.101* | 0.007 | 0.048 | 1.000 | ||||||||||
9 | -0.092 | -0.170** | 0.171** | -0.179** | 0.005 | -0.203** | -0.023 | -0.138** | 1.000 | |||||||||
10 | -0.184** | -0.005 | 0.071 | -0.031 | -0.046 | -0.067 | -0.095 | -0.065 | 0.248** | 1.000 | ||||||||
11 | 0.020 | -0.067 | 0.078 | 0.021 | 0.097 | -0.052 | -0.095 | 0.020 | 0.022 | -0.019 | 1.000 | |||||||
12 | -0.097 | 0.017 | -0.027 | -0.086 | 0.014 | -0.010 | -0.085 | -0.022 | -0.019 | -0.025 | 0.141** | 1.000 | ||||||
13 | -0.137** | -0.101* | 0.094 | -0.027 | -0.010 | -0.011 | -0.081 | -0.087 | 0.409** | 0.174** | -0.017 | 0.041 | 1.000 | |||||
14 | -0.129** | -0.023 | 0.130** | -0.040 | 0.020 | 0.036 | -0.041 | 0.001 | 0.109* | 0.068 | -0.029 | 0.151** | 0.117* | 1.000 | ||||
15 | -0.145** | 0.036 | 0.071 | -0.029 | 0.038 | 0.057 | -0.067 | -0.087 | 0.096 | 0.148** | 0.057 | 0.000 | 0.088 | 0.009 | 1.000 | |||
16 | 0.084 | -0.228** | 0.059 | -0.032 | 0.033 | -0.061 | -0.045 | -0.050 | -0.085 | -0.093 | 0.022 | -0.106* | -0.112* | -0.096 | -0.049 | 1.000 | ||
17 | -0.144** | -0.021 | -0.013 | 0.161** | 0.097 | 0.074 | -0.073 | -0.002 | -0.102* | -0.002 | 0.069 | -0.064 | -0.121* | -0.054 | 0.053 | 0.162** | 1.000 |
[1] | 张绍良, 米家鑫, 侯湖平, 等. 矿山生态恢复研究进展: 基于连续三届的世界生态恢复大会报告[J]. 生态学报, 2018, 38(15):5611-5619. |
[2] | 王金满, 郭凌俐, 白中科, 等. 黄土区露天煤矿排土场复垦后土壤与植被的演变规律[J]. 农业工程学报, 2013, 29(21):223-232. |
[3] | ZHAO Z Q, WANG L H, BAI Z K, et al. Development of population structure and spatial distribution patterns of a restored forest during 17-year succession (1993-2010) in Pingshuo opencast mine spoil, China[J]. Environmental Monitoring and Assessment, 2015, 187(7):1-13. |
[4] | 张青, 毕润成, 吴兆飞, 等. 安太堡露天煤矿植被恢复区物种天然更新时空动态[J]. 生态学杂志, 2016, 35(12):3223-3232. |
[5] | 赵冰清, 郭东罡, 白中科, 等. 半干旱区露天煤矿复垦土地人工植被2010—2015年间群落动态[J]. 生态学杂志, 2018, 37(6):1636-1644. |
[6] | 岳建英, 郭春燕, 李晋川, 等. 安太堡露天煤矿复垦区野生植物定居分析[J]. 干旱区研究, 2016, 33(2):399-409. |
[7] | 王丽媛, 郭东罡, 白中科, 等. 露天煤矿生态复垦区刺槐+油松混交林下草本植物组成及空间分布格局[J]. 应用与环境生物学报, 2012, 18(3):399-404. |
[8] | 许静雯. 黄土区大型露天矿复垦地野生草本植物侵入特征研究[J]. 北京: 中国地质大学(北京), 2012. |
[9] | 赵洋, 张鹏, 胡宜刚, 等. 露天煤矿排土场不同配置人工植被对草本植物物种多样性的影响[J]. 生态学杂志, 2015, 34(2):387-392. |
[10] | 原野, 赵中秋, 白中科, 等. 安太堡露天煤矿不同复垦模式下草本植物优势种生态位[J]. 生态学杂志, 2016, 35(12):3215-3222. |
[11] | 白文霞, 李素清, 狄晓艳. 安太堡露天煤矿复垦地不同植被类型下草本植物群落优势种种间关联[J]. 应用与环境生物学报, 2018, 24(1):140-145. |
[12] | 黄元仿, 张世文, 张立平, 等. 露天煤矿土地复垦生物多样性保护与恢复研究进展[J]. 农业机械学报, 2015, 46(8):72-82. |
[13] | 奇凯, 张春雨, 侯继华, 等. 赤峰市沙地油松林草本植物多样性及种间关联动态[J]. 生态学报, 2010, 30(18):5106-5112. |
[14] |
黄云霞, 徐萱, 张莉芗, 等. 百山祖常绿阔叶林灌草层物种组成和分布的10年动态[J]. 生物多样性, 2016, 24(12):1353-1363.
DOI |
[15] |
HUBBELL S P, FOSTER R B. Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management[J]. Oikos, 1992, 63(1):48-61.
DOI URL |
[16] | CONDIT R, ASHTON P S, MANOKARAN N, et al. Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots[J]. Philosophical Transactions of the Royal Society of London, 1999, 354(1391):1739-1748. |
[17] |
ENQUIST B J, ENQUIST C A F. Long-term change within a neotropical forest: assessing differential functional and floristic responses to disturbance and drought[J]. Global Change Biology, 2011, 17(3):1408-1424.
DOI URL |
[18] | 白中科, 周伟, 王金满, 等. 再论矿区生态系统恢复重建[J]. 中国土地科学, 2018, 32(11):1-9. |
[19] | CONDIT R. Research in large, long-term tropical forest plots[J]. Trends in Ecology and Evolution, 1995, 10(1):18-22. |
[20] | 杨晓艳, 张世雄, 温静, 等. 吕梁山森林群落草本层植物物种多样性的空间格局及其对模拟增温的响应[J]. 生态学报, 2018, 38(18):6642-6654. |
[21] | 《中国植被》编辑委员会. 中国植被[M]. 北京: 科学出版社, 1980. |
[22] | 《山西植物志》编辑委员会. 山西植物志[M]. 北京: 中国科学技术出版社, 1992. |
[23] | 《内蒙古植物志》编辑委员会. 内蒙古植物志[M]. 呼和浩特: 内蒙古人民出版社, 1982. |
[24] | 刘江华, 李登武, 刘国彬, 等. 刺槐林下植被的水分生态型和生活型谱特征[J]. 中国水土保持科学, 2008, 6(2):95-99, 112. |
[25] |
PEET R K. The measurement of species diversity[J]. Annual Review of Ecology and Systematics, 1974, 5(1):285-307.
DOI URL |
[26] |
SCHLUTER D. A variance test for detecting species associations, with some example applications[J]. Ecology, 1984, 65(3):998-1005.
DOI URL |
[27] | 王伯荪, 彭少麟. 南亚热带常绿阔叶林种间联结测定技术研究: Ⅰ.种间联结测式的探讨与修正[J]. 植物生态学与地植物学丛刊, 1985, 9(4):274-285. |
[28] | 张金屯. 数量生态学[M]. 北京: 科学出版社, 2004. |
[29] |
GU L, GONG Z W, LI W Z. Niches and interspecific associations of dominant populations in three changed stages of natural secondary forests on loess plateau, P R China[J]. Scientific Reports, 2017, 7(1):1-2.
DOI URL |
[30] |
HUANG Y Y, HAN H, TANG C, et al. Plant community composition and interspecific relationships among dominant species on a post-seismic landslide in Hongchun Gully, China[J]. Journal of Mountain Science, 2017, 14(10):1985-1994.
DOI URL |
[31] | 郝蓉, 白中科, 赵景逵, 等. 黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J]. 生态学报, 2003, 23(8):1470-1476. |
[32] | 马建军, 张树礼, 李青丰. 黑岱沟露天煤矿复垦土地野生植物侵入规律及对生态系统的影响[J]. 环境科学研究, 2006, 19(5):101-106. |
[33] | LIU X Y, CAO Y G, BAI Z K, et al. Evaluating relationships between soil chemical properties and vegetation cover at different slope aspects in a reclaimed dump[J]. Environmental Earth Sciences, 2017, 76(23):1-11. |
[34] | 赵丽娅, 高丹丹, 熊炳桥, 等. 科尔沁沙地恢复演替进程中群落物种多样性与地上生物量的关系[J]. 生态学报, 2017, 37(12):4108-4117. |
[35] |
YUAN Y, ZHAO Z Q, NIU S Y, et al. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: a case study from Robinia pseudoacacia, reclaimed forests, Pingshuo mine, China[J]. CATENA, 2018, 165:72-79.
DOI URL |
[36] |
FROUZ J, PRACH K, PIŽL V, et al. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites[J]. European Journal of Soil Biology, 2008, 44(1):109-121.
DOI URL |
[37] | SOBUJ N A, RAHMAN M. Comparison of plant diversity of natural forest and plantations of Rema-Kalenga wildlife sanctuary of Bangladesh[J]. Journal of Forest and Environmental Science, 2011, 27(3):127-134. |
[38] | RAWLIK M, KASPROWICZ M, JAGODZINSKI A M. Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands[J]. Forest Ecology and Management, 2018, 409:541-551. |
[39] |
HOBBIE S E, REICH P B, OLEKSYN J, et al. Tree species effects on decomposition and forest floor dynamics in a common garden[J]. Ecology, 2006, 87(9):2288-2297.
DOI URL |
[40] |
KNIGHT K S, OLEKSYN J, JAGODZINSKI A M, et al. Overstorey tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility[J]. Diversity and Distributions, 2008, 14(4):666-675.
DOI URL |
[41] | BARBIER S, GOSSELIN F, BALANDIER P. Influence of tree species on understory vegetation diversity and mechanisms involved: a critical review for temperate and boreal forests[J]. Forest Ecology and Management, 2008, 254(1):1-15. |
[42] | 常学礼, 赵爱芬, 李胜功. 科尔沁沙地固定沙丘植被物种多样性对降水变化的响应[J]. 植物生态学报, 2000, 24(2):147-151. |
[43] |
KUMAR A, JHARIYA M K, YADAV D K, et al. Vegetation dynamics in Bishrampur collieries of northern Chhattisgarh, India: eco-restoration and management perspectives[J]. Environmental Monitoring and Assessment, 2017, 189(8):1-29.
DOI URL |
[44] | 许丽, 樊金栓, 周心澄, 等. 阜新市海州露天煤矿排土场植被自然恢复过程中物种多样性研究[J]. 干旱区资源与环境, 2005, 19(6):152-157. |
[45] | 白中科, 师学义, 周伟, 等. 人工如何支持引导生态系统自然修复[J]. 中国土地科学, 2020, 34(9):1-9. |
[46] | ZHANG M T, KANG X G, MENG J H, et al. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains[J]. Journal of Mountain Science, 2015, 12(3):659-670. |
[47] | 杜道林, 刘玉成. 缙云山亚热带栲树林优势种群间联结性研究[J]. 植物生态学报, 1995, 19(2):149-157. |
[48] |
ROXBURGH S H, CHESSON P. A new method for detecting species associations with spatially autocorrelated data[J]. Ecology, 1998, 79(6):2180-2192.
DOI URL |
[49] | 周先叶, 王伯荪, 李鸣光, 等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报, 2000, 24(3):332-339. |
[50] | 刘秀珍, 张峰, 张金屯, 等. 管涔山撂荒地植物群落演替过程中优势种种间关系分析[J]. 山西大学学报(自然科学版), 2010, 33(1):142-146. |
[1] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[2] | ZHU Liang, LIU Jingtao, ZHANG Yuxi, LIU Dandan, JIAO Shizhe. Evaluation of water resource multiple effect based on the analysis of water circulation: An example of the Beichuan River Basin upstream of the Yellow River [J]. Earth Science Frontiers, 2022, 29(3): 263-270. |
[3] | ZHANG Junjie, BAI Zhongke, YANG Boyu. Gravel curtain layer in the desert open-pit mining area of Xinjiang: Ecological damage and reconstruction method [J]. Earth Science Frontiers, 2021, 28(4): 142-152. |
[4] | MENG Nan,WANG Meng,LI Shanshan,LI Xiaoyue,ZHENG Han,CHEN Li, CHEN Shibao. Effects of intercropping ten herbaceous plants on lead uptake by and accumulation in water spinach [J]. Earth Science Frontiers, 2019, 26(6): 103-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||