Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (2): 79-93.DOI: 10.13745/j.esf.sf.2022.2.7
Previous Articles Next Articles
LIU Yong1(), LI Tingdong1,*(
), XIAO Qinghui2, ZHANG Kexin3, ZHU Xiaohui4, DING Xiaozhong1
Received:
2022-02-22
Revised:
2022-03-04
Online:
2022-03-25
Published:
2022-03-31
Contact:
LI Tingdong
CLC Number:
LIU Yong, LI Tingdong, XIAO Qinghui, ZHANG Kexin, ZHU Xiaohui, DING Xiaozhong. Progress in geological study of oceanic plates[J]. Earth Science Frontiers, 2022, 29(2): 79-93.
①阿勒格达依—库尔提—布尔根—玛因鄂博(额尔齐斯)俯冲增生杂岩带(S-C) | ②库吉拜—洪古勒楞俯冲增生杂岩带(![]() |
---|---|
③扎河坝—阿尔曼泰俯冲增生杂岩带(![]() | ④唐巴勒—玛依勒—巴尔鲁克增生杂岩带(O-S) |
⑤达尔布特增生杂岩带(D-C) | ⑥卡拉麦里俯冲增生杂岩带(D-C) |
⑦依连哈比尔尕—巴音沟俯冲增生杂岩带(D-C) | ⑧干沟—色尔特能—康古尔塔格—大草滩增生杂岩带(![]() |
⑨苦水增生杂岩带(C-P1) | ⑩南天山俯冲增生杂岩带(O-D) |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Table 1 Distribution of subduction-accreation complex belts/continental accretionary complex belts in China
①阿勒格达依—库尔提—布尔根—玛因鄂博(额尔齐斯)俯冲增生杂岩带(S-C) | ②库吉拜—洪古勒楞俯冲增生杂岩带(![]() |
---|---|
③扎河坝—阿尔曼泰俯冲增生杂岩带(![]() | ④唐巴勒—玛依勒—巴尔鲁克增生杂岩带(O-S) |
⑤达尔布特增生杂岩带(D-C) | ⑥卡拉麦里俯冲增生杂岩带(D-C) |
⑦依连哈比尔尕—巴音沟俯冲增生杂岩带(D-C) | ⑧干沟—色尔特能—康古尔塔格—大草滩增生杂岩带(![]() |
⑨苦水增生杂岩带(C-P1) | ⑩南天山俯冲增生杂岩带(O-D) |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Fig. 8 Geological structural map of the oceanic plate in the Mazongshan subduction-accretion complex belt, Beishan orogenic belt, Gansu Province. Adapted from [15, 64].
[1] | 李廷栋, 肖庆辉, 潘桂棠, 等. 关于发展洋板块地质学的思考[J]. 地球科学, 2019, 44(5):1441-1451. |
[2] | 陆松年, 相振群. 鲁西新太古代洋板块地质及板块构造活动遗迹[J]. 地球科学, 2020, 45(7):2279-2292. |
[3] | 邓晋福, 刘翠, 狄永军, 等. 英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分[J]. 地学前缘, 2018, 25(6):042-050. |
[4] | 潘桂棠, 肖庆辉, 张克信, 等. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J]. 地球科学, 2019, 44(5):1544-1561. |
[5] | 闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37:167-191 |
[6] | 张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1):1-12. |
[7] | 王根厚. 造山带野外工作方法[M]. 北京: 地质出版社, 2019: 203. |
[8] |
DILEK Y, FURNES H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123(3/4):387-411.
DOI URL |
[9] | 张继恩, 陈艺超, 肖文交, 等. 蛇绿岩与蛇绿混杂带结构[J]. 地质科学, 2021, 56(2):560-595. |
[10] |
SAFONOVA I Y, MARUYAMA S, KOJIMA S, et al. Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology and geochemistry[J]. Gondwana Research, 2016, 33:92-114.
DOI URL |
[11] |
MARUYAMA S, KAWAI T, WINDLEY B F. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, anglesey-lleyn, wales, UK[J]. Geological Society, London, Special Publications, 2010, 338(1):55-75.
DOI URL |
[12] | WAKITA K, METCALFE I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 2005, 24:670-702. |
[13] |
CAWOOD P A, KRONER A, COLLINS W J, et al. Earth accretionary orogens in space and time[J]. Geological Society, London, Special Publication, 2009, 318:1-36.
DOI URL |
[14] | 李荣社, 计文化, 辜平阳, 等. 造山带(蛇绿)构造混杂岩带填图方法[M]. 武汉: 中国地质大学出版社, 2016: 128. |
[15] | 张克信, 何卫红, JIN J S, 等. 洋板块地层在造山带构造-地层区划中的应用[J]. 地球科学, 2020, 45(7):2305-2325. |
[16] | 张克信, 李仰春, 王丽君, 等. 造山带混杂岩及相关术语[J]. 地质通报, 2020, 39(6):765-782. |
[17] |
ISOZAKI Y, MARUYAMA S, FURUOKA F. Accreted oceanic materials in Japan[J]. Tectonophysics, 1990, 181:179-205.
DOI URL |
[18] |
KUSKY T M, WINDLEY B F, SAFONOVA I, et al. Recog-nition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accre tion[J]. Gondwana Research, 2013, 24(2):501-547.
DOI URL |
[19] |
WAKITA K. Mappable features of mélanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of mino and chichibuterranes in Southwest Japan[J]. Tectonophysics, 2012, 568/569:74-85.
DOI URL |
[20] |
XIAO W J, SONG D F, WINDLEY BF, et al. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China: Earth Sciences, 2020, 63(3):329-361.
DOI URL |
[21] |
ZAMORAS L R, MATSUOKA A. Accretion and postaccretion tectonics of the Calamian Islands, North Palawan block, Philippines[J]. The Island Arc, 2004, 13:506-519.
DOI URL |
[22] |
ZHANG J E, CHEN Y C, XIAO W J, et al. Sub-parallel ridge-trench interaction and an alternative model for the Silurian-Devonian archipelago in Western Junggar and North-Central Tianshan in NW China[J]. Earth-Science Reviews, 2021, 217:103648.
DOI URL |
[23] |
ZHANG Q C, LI Z H, WU Z H, et al. Subduction initiation of the western Proto-Tethys Ocean: new evidence from the Cambrian intra-oceanic forearc ophiolitic mélange in the western Kunlun Orogen, NW Tibetan Plateau[J]. GSA Bulletin, 2022. 134:145-159.
DOI URL |
[24] |
CHEN Z Y, XIAO W J, BRIAN F, et al. Composition, provenance, and tectonic setting of the Southern Kangurtag accretionary complex in the Eastern Tianshan, NW China: implications for the late paleozoic evolution of the North Tianshan Ocean(Article)[J]. Tectonics, 2019, 38(8):2779-2802.
DOI URL |
[25] |
HARALD F, INNA S. Ophiolites of the Central Asian Orogenic Belt: geochemical and petrological characterization and tectonic settings[J]. Geoscience Frontiers, 2019, 10(4):1255-1284.
DOI URL |
[26] | KUSKY T, WANG J, WANG L. Mélanges through time: life cycle of the world’s largest Archean mélange compared with mesozoic and paleozoic subduction-accretion-collision mélanges[J]. Earth-Science Reviews, 2020, 209:103-303. |
[27] | 杜兵盈, 刘飞, 刘勇, 等. 黑龙江省中东部地区二叠纪—早侏罗世洋陆演化过程及成矿动力学背景探讨[J]. 地质评论, 2022, 68(2):431-451. |
[28] |
FU C L, YAN Z, WANG Z Q. Lajishankou ophiolite complex: implications for paleozoic multiple accretionary and collisional events in the South Qilian Belt(Article)[J]. Tectonics, 2018, 37(5):1321-1346.
DOI URL |
[29] | 陈超, 朱江. 黄陵基底北部古元古代洋板块地质与石墨成矿[J]. 资源环境与工程, 2021, 35(6):769-776. |
[30] |
ZHAO X L, JIANG Y, XING G F, et al. The early Paleozoic oceanic island seamount in the Chencai area, Zhejiang Province: implication of the Yangtze-Cathaysia amalgamation[J]. Geological Journal, 2020, 55(2):1148-1162.
DOI URL |
[31] |
CHENG Y, XIAOQH, LIT D, et al. An Intra-Oceanic subdiuction system influenced by ridge subduction in the diyanrmiao subduction accretionary complex of the Xar MoronArea,Eastern Margin of the Central Asian Orogenic Belt[J]. Journal of Earth Science, 2021, 32(1):253-266.
DOI URL |
[32] | 杨晓平, 钟辉, 杨雅军, 等. 大兴安岭地区古生代构造格架重建: 来自俯冲增生杂岩研究进展[J]. 地学前缘, 2022, 29(2):94-114. |
[33] |
YANG L M, SONG S G, MARK B, et al. Oceanic accretionary belt in the West Qinling Orogen: links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 2018, 64:137-162.
DOI URL |
[34] | DING X Z, ZHANG K X, GAO L Z, et al. Research progress and the main achievements of the regional geology of China preface[J]. Acta Geologica Sinica(English Edition), 2020, 94(4):865-876. |
[35] | 宁括步, 邓奇, 任光明, 等. 菜子园俯冲增生杂岩带(关河—木古地区)1: 50 000区域地质图[CM]. 成都: 中国地质调查局成都地质调查中心, 2021. |
[36] | 任光明, 庞维华, 潘桂棠, 等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报, 2017, 36(11):2061-2075. |
[37] | 任飞, 尹福光, 孙洁, 等. 甘孜-理塘俯冲增生杂岩带中二叠世构造演化: 来自龙蟠蛇绿岩年龄、 地球化学的证据[J]. 地质通报, 2021, 40(6):P942-954. |
[38] | 张克信, 殷鸿福, 朱云海, 等. 史密斯地层与非史密斯地层[J]. 地球科学: 中国地质大学学报, 2003, 28(4):361-369. |
[39] |
ISOZAKI Y. Anatomy and genesis of a subduction-related orogen: a new view of geotectonic subdivision an evolution of the Japanese Islands[J]. The Island Arc, 1996, 5:289-320.
DOI URL |
[40] |
ISOZAKI Y. Contrasting two types of orogens in Permo-Triassic Japan: accretionary versus collisional[J]. The Island Arc, 1997, 6(1):2-24.
DOI URL |
[41] | 张克信, 何卫红, 徐亚东, 等. 论从俯冲增生杂岩带重建洋板块地层主要类型与序列: 以青藏特提斯二叠系为例[J]. 沉积与特提斯地质, 2021, 41(2):137-151. |
[42] | BODINIER J L, GODARD M. Orogenic, ophiolitic, and abyssal peridotites[J]. Treatise on Geochemistry, 2014, 2:103-167. |
[43] | 张克信, 何卫红, 徐亚东, 等. 中国洋板块地层分布及构造演化[J]. 地学前缘, 2016, 23(6):24-30. |
[44] | 毛晓长, 王根厚, 梁晓, 等. 增生杂岩带1: 5万地质填图的实践与探索: 以西藏羌塘中部角木日地区为例[J]. 地学前缘, 2015, 22(3):382-393. |
[45] |
DILEK Y, YANG J S. Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis[J]. Lithosphere, 2018, 10:3-13.
DOI URL |
[46] |
DILEK Y, FURNES H. Ophiolites and their origins[J]. Elements, 2014, 10:93-100.
DOI URL |
[47] |
MIYASHIRO A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth and Planetary Science Letters, 1973, 19:218-224.
DOI URL |
[48] |
MOORES E M. Origin and emplacement of ophiolites[J]. Reviews of Geophysics, 1982, 20(4):735-760.
DOI URL |
[49] | NICOLAS A, BOUDIER F. Where ophiolites come from and what they tell us[J]. Geological Society of America Special Paper, 2003, 373:137-152. |
[50] |
PEARCE J A. Basalt geochemistry used to investigate past tectonic environments on Cyprus[J]. Tectonophysics, 1975, 25:41-67.
DOI URL |
[51] |
PEARCE J A. Ophiolites: immobile elements fingerprinting of ophiolites[J]. Elements, 2014, 10(2):101-108.
DOI URL |
[52] | 张克信, 何卫红, 徐亚东, 等. 中国沉积岩建造与沉积大地构造[M]. 北京: 地质出版社, 2017: 604. |
[53] |
FURNES H, DILEK Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: a global synjournal[J]. Earth-Science Reviews, 2017, 166:1-37.
DOI URL |
[54] | 肖庆辉, 李廷栋, 潘桂棠, 等. 识别洋陆转换的岩石学思路: 洋内弧与初始俯冲的识别[J]. 中国地质, 2016, 43(3):721-737. |
[55] |
ISHIZUKA O, TANI K, REAGAN M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306:229-240.
DOI URL |
[56] | ISHIZUKA O, TAYLOR R N, YUASA M, et al. Making and breaking anisland arc: a new perspective from the Oligocene Kyushu-Palauarc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5):Q05005. |
[57] |
ISHIZUKA O, TANI K, REAGAN M. KIzu-Bonin-Mariana forearc crust as a modern ophiolite analogue[J]. Elements, 2014, 10:115-120.
DOI URL |
[58] | 肖庆辉, 刘勇, 程杨, 等. 如何判定俯冲增生杂岩中的高度肢解的洋底高原-海山系统[J]. 沉积与特提斯地质, 2021, 41(2):152-162. |
[59] | 刘翠, 邓晋福, 李胜荣, 等. 胶东燕山期大型超大型金矿集区形成的壳幔结构探讨: 来自致矿火成岩(组合)的约束[J]. 地学前缘, 2018, 25(6):296-307. |
[60] | 冯艳芳, 邓晋福, 肖庆辉, 等. 长乐—南澳构造带花岗岩类年代学、岩石组合与构造演化[M]. 北京: 地质出版社, 2013: 1-168. |
[61] | REAGAN M K, ISHIZUKA O, STERNER R J, et al. Fore-arc basaltsand subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3):1-17. |
[62] |
REAGAN M K, MCCLELLAND W C, GIRARD G, et al. The geology of the southern Mariana fore-arc crust: implications for the scale of eocene volcanism in the western pacific[J]. Earth and Planetary Science Letters, 2013, 380:41-51.
DOI URL |
[63] | 吴福元, 王建刚, 刘传周, 等. 大洋岛弧的前世今生[J]. 岩石学报, 2019, 35(1):1-15. |
[64] | 潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 2020, 45(7):2293-2304. |
[65] | WANG J X, ZHANG K X, JIN J S, et al. Early Paleozoic ocean plate stratigraphy of the Beishan orogenic zone, NW China: implications for regional tectonic evolution[J]. Acta Geologica Sinica(English Edition), 2020, 94(4):1042-1059. |
[66] |
WANG L J, ZHANG K X, LIN S F, et al. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late Early Paleozoic juxtaposition of the Yangtze Block and the West Cathaysia terrane, South China[J]. GSA Bulletin, 2022, 134(1/2):113-129.
DOI URL |
[67] | FU C L, YAN Z, AITCHISON J C, et al. Short-lived intra-oceanic arc-trench system in the North Qaidam belt (NW China) reveals complex evolution of the Proto-Tethyan Ocean[J]. GSA Bulletin, 2021. https://doi.org/10.1130/B36127.1 |
[68] | 朱小辉. 南祁连和柴北缘早古生代构造转换中的岩浆响应[D]. 西安: 西北大学, 2021. |
[69] | 闫臻. 混杂岩地质调查与填图方法[M]. 北京: 地质出版社, 2020. |
[70] | 闫臻, 牛漫兰, 付长垒, 等. 拉脊山昂思多蛇绿岩-增生杂岩1: 25 000 专题地质图数据集[J]. 中国地质, 2021, 48(增刊2):53-65. |
[71] | 张进, 曲军峰, 赵衡, 等. 俯冲增生杂岩带变形特征、成因机制及与后期变形的区别[J]. 地学前缘, 2022, 29(2):56-78. |
[1] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
[2] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[3] | WANG Jian, YANG Yanchen, LI Ai, YUAN Haiqi. Characteristics of mineral chemistry and geochemistry of the Late Triassic Hongqiling mafic-ultramafic intrusions: Implications for Ni-Cu mineralization [J]. Earth Science Frontiers, 2024, 31(2): 249-269. |
[4] | REN Jishun, LIU Jianhui, ZHU Junbin. Mesozoic superposed orogenic system in eastern China [J]. Earth Science Frontiers, 2024, 31(1): 142-153. |
[5] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[6] | MU Hansheng, XUE Xinyu, JIANG Zaixing. Shale oil and gas in the Mesozoic Basins, eastern Yanshan Orogenic Belt—exploration status and outlooks [J]. Earth Science Frontiers, 2023, 30(2): 282-295. |
[7] | YANG Xiaoping, ZHONG Hui, YANG Yajun, JIANG Bing, QIAN Cheng, MA Yongfei, ZHANG Chao. Research progress on the subduction-accretion complex: Reconstruction of the tectonic framework of the Great Xing’an Range [J]. Earth Science Frontiers, 2022, 29(2): 94-114. |
[8] | ZHANG Dingding, ZHANG Heng. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints [J]. Earth Science Frontiers, 2022, 29(1): 303-315. |
[9] | HUANG Ranxiao, WANG Guosheng, YUAN Guoli, QIU Kunfeng, Hounkpe Jechonias BIDOSSESSI. Assimilation-fractional crystallization (AFC) of pegmatitic magma and its implications for uranium mineralization: A case study of the Husab uranium deposit, Namibia [J]. Earth Science Frontiers, 2022, 29(1): 377-402. |
[10] | ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project [J]. Earth Science Frontiers, 2021, 28(5): 230-259. |
[11] | HUANG Haiyong, XU Yang, YIN Xuwei, YANG Kunguang, LIU Yu. Geochronology, petrogenesis and tectonic implications of the Qiaodian granite porphyry from the western Dabie Orogenic Belt, Central China [J]. Earth Science Frontiers, 2021, 28(5): 380-412. |
[12] | CHEN Guochao, PEI Xianzhi, LI Ruibao, LI Zuochen, PEI Lei, LIU Chengjun, CHEN Youxin, WANG Meng, GAO Feng, WEI Junqi. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt [J]. Earth Science Frontiers, 2020, 27(4): 33-48. |
[13] | DENG Jun, WANG Qingfei, CHEN Fuchuan, LI Gongjian, YANG Liqiang, WANG Changming, ZHANG Jing, SUN Xiang, SHU Qihai, HE Wenyan, GAO Xue, GAO Liang, LIU Xuefei, ZHENG Yuanchuan, QIU Kunfeng, XUE Shengchao, XU Jiahao. Further discussion on the Sanjiang Tethyan composite metallogenic system [J]. Earth Science Frontiers, 2020, 27(2): 106-136. |
[14] | LI Wenyuan, WANG Yalei, QIAN Bing, LIU Yuegao, HAN Yixiao. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block [J]. Earth Science Frontiers, 2020, 27(2): 276-293. |
[15] | REN Zhi, ZHOU Taofa, YUAN Feng, ZHANG Huaidong. Characteristics of the metallogenic system of the Shapinggou super-large porphyry molybdenum deposit in the Dabie orogenic belt, Anhui Province [J]. Earth Science Frontiers, 2020, 27(2): 353-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||