Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 106-136.DOI: 10.13745/j.esf.sf.2020.3.9
Previous Articles Next Articles
DENG Jun1,2(), WANG Qingfei1,2, CHEN Fuchuan1,2, LI Gongjian1,2, YANG Liqiang1,2, WANG Changming1,2, ZHANG Jing1,2, SUN Xiang1,2, SHU Qihai1,2, HE Wenyan1,2, GAO Xue1,2, GAO Liang1,3, LIU Xuefei1,2, ZHENG Yuanchuan1,2, QIU Kunfeng1,2, XUE Shengchao1,2, XU Jiahao1,2
Received:
2020-03-02
Revised:
2020-03-12
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
DENG Jun, WANG Qingfei, CHEN Fuchuan, LI Gongjian, YANG Liqiang, WANG Changming, ZHANG Jing, SUN Xiang, SHU Qihai, HE Wenyan, GAO Xue, GAO Liang, LIU Xuefei, ZHENG Yuanchuan, QIU Kunfeng, XUE Shengchao, XU Jiahao. Further discussion on the Sanjiang Tethyan composite metallogenic system[J]. Earth Science Frontiers, 2020, 27(2): 106-136.
成矿系统类 | 成矿系统 | 成矿作用类型 | 构造背景 | 代表性矿床 | 成矿时代/Ma | 参考文献 |
---|---|---|---|---|---|---|
增生造山 | 原特提斯 成矿系统 | BIF | 原特提斯洋俯冲弧前盆地 | 惠民Fe矿床 | 中元古代 | 沈上越等[ |
VMS | 原特提斯洋俯冲弧后盆地 | 大坪掌Cu矿床 | 429±10 | Lehmann等[ | ||
古特提斯 成矿系统 | VMS | 古特提斯洋扩张洋岛 | 老厂Ag-Pb-Zn矿床 | 323.6±2.8 | 陈觅等[ | |
古特提斯洋扩张洋脊 | 铜厂街Cu矿床 | 未知 | ||||
古特提斯洋俯冲弧间盆地 | 呷村Ag多金属矿床 | 217±28 | Hou等[ | |||
古特提斯洋俯冲弧后盆地 | 羊拉Cu矿床 | 296.1±7.0 | Zhan等[ | |||
斑岩-夕卡岩型 | 古特提斯洋俯冲火山岛弧 | 普朗Cu矿、雪鸡坪Cu矿、浪都Cu矿 | 230~199 | Li等[ | ||
浅成低温型 | 古特提斯洋俯冲火山岛弧 | 官房、文玉Cu矿床 | 234.3±0.8 | 陈莉等[ | ||
中特提斯 成矿系统 | 岩浆型 | 中特提斯洋扩张裂谷盆地 | 大雪山Cu-Ni矿床 | 300.5±1.6 | Wang等[ | |
夕卡岩型 | 中特提斯洋俯冲陆缘弧 | 核桃坪Pb-Zn矿床、芦子园Fe-Pb-Zn矿床、滇滩Fe矿床 | 约120 | Deng等[ | ||
新特提斯 成矿系统 | 斑岩-夕卡岩型 | 新特提斯洋俯冲陆缘弧 | 红山Cu-Mo、休瓦促W-Mo、夏塞Ag-Pb-Zn、措莫隆Sn-Pb-Zn矿床 | 97~76 | 杨立强等[ | |
云英岩型 | 新特提斯洋俯冲陆缘弧 | 来利山Sn矿、小龙河Sn矿 | 75~55 | Wang等[ | ||
碰撞造山 | 挤压褶皱 成矿系统 | 热液脉型 | 挤压褶皱盆地 | 金满Cu-Ag、连城Cu-Mo矿床 | 47.8±1.8 | Zhang等[ |
层控沉积- 热液改造型 | 挤压褶皱盆地 | 笔架山Sb、扎村Au、石磺厂As、黑龙潭Hg | 中-晚始新世 | 王长明等[ | ||
拆沉伸展 成矿系统 | 斑岩-夕卡岩型 | 拆沉伸展钾质斑岩带 | 玉龙Cu矿、北衙Au、马厂箐Cu-Mo、哈播Cu-Au矿、铜厂Cu矿床 | 约35 | Deng等[ | |
挤压走滑 成矿系统 | 造山型 | 走滑剪切带 | 镇沅Au、金厂Au、大坪Au、长安Au矿床 | 27~21 | Deng等[ Gao等[ | |
MVT型 | 走滑拉分盆地 | 金顶Pb-Zn矿床、白秧坪Pb-Zn矿床 | 32~21 | 王长明等[ | ||
伸展旋钮 成矿系统 | 热泉型 | 伸展火山弧 | 梁河Au | |||
沉积型 | 伸展盆地 | 大寨Ge矿 |
Table 1 Types and features of main metallogenic systems in Sanjiang Tethyan domain
成矿系统类 | 成矿系统 | 成矿作用类型 | 构造背景 | 代表性矿床 | 成矿时代/Ma | 参考文献 |
---|---|---|---|---|---|---|
增生造山 | 原特提斯 成矿系统 | BIF | 原特提斯洋俯冲弧前盆地 | 惠民Fe矿床 | 中元古代 | 沈上越等[ |
VMS | 原特提斯洋俯冲弧后盆地 | 大坪掌Cu矿床 | 429±10 | Lehmann等[ | ||
古特提斯 成矿系统 | VMS | 古特提斯洋扩张洋岛 | 老厂Ag-Pb-Zn矿床 | 323.6±2.8 | 陈觅等[ | |
古特提斯洋扩张洋脊 | 铜厂街Cu矿床 | 未知 | ||||
古特提斯洋俯冲弧间盆地 | 呷村Ag多金属矿床 | 217±28 | Hou等[ | |||
古特提斯洋俯冲弧后盆地 | 羊拉Cu矿床 | 296.1±7.0 | Zhan等[ | |||
斑岩-夕卡岩型 | 古特提斯洋俯冲火山岛弧 | 普朗Cu矿、雪鸡坪Cu矿、浪都Cu矿 | 230~199 | Li等[ | ||
浅成低温型 | 古特提斯洋俯冲火山岛弧 | 官房、文玉Cu矿床 | 234.3±0.8 | 陈莉等[ | ||
中特提斯 成矿系统 | 岩浆型 | 中特提斯洋扩张裂谷盆地 | 大雪山Cu-Ni矿床 | 300.5±1.6 | Wang等[ | |
夕卡岩型 | 中特提斯洋俯冲陆缘弧 | 核桃坪Pb-Zn矿床、芦子园Fe-Pb-Zn矿床、滇滩Fe矿床 | 约120 | Deng等[ | ||
新特提斯 成矿系统 | 斑岩-夕卡岩型 | 新特提斯洋俯冲陆缘弧 | 红山Cu-Mo、休瓦促W-Mo、夏塞Ag-Pb-Zn、措莫隆Sn-Pb-Zn矿床 | 97~76 | 杨立强等[ | |
云英岩型 | 新特提斯洋俯冲陆缘弧 | 来利山Sn矿、小龙河Sn矿 | 75~55 | Wang等[ | ||
碰撞造山 | 挤压褶皱 成矿系统 | 热液脉型 | 挤压褶皱盆地 | 金满Cu-Ag、连城Cu-Mo矿床 | 47.8±1.8 | Zhang等[ |
层控沉积- 热液改造型 | 挤压褶皱盆地 | 笔架山Sb、扎村Au、石磺厂As、黑龙潭Hg | 中-晚始新世 | 王长明等[ | ||
拆沉伸展 成矿系统 | 斑岩-夕卡岩型 | 拆沉伸展钾质斑岩带 | 玉龙Cu矿、北衙Au、马厂箐Cu-Mo、哈播Cu-Au矿、铜厂Cu矿床 | 约35 | Deng等[ | |
挤压走滑 成矿系统 | 造山型 | 走滑剪切带 | 镇沅Au、金厂Au、大坪Au、长安Au矿床 | 27~21 | Deng等[ Gao等[ | |
MVT型 | 走滑拉分盆地 | 金顶Pb-Zn矿床、白秧坪Pb-Zn矿床 | 32~21 | 王长明等[ | ||
伸展旋钮 成矿系统 | 热泉型 | 伸展火山弧 | 梁河Au | |||
沉积型 | 伸展盆地 | 大寨Ge矿 |
Fig.4 Distribution of continental blocks and principal sutures of Southeast Asia (a) and tectonic framework of Sanjiang Tethyan domain (b) (a adapted from [66-67], b adapted from [20])
复合成矿系统 | 复合模式 | 成矿作用类型 | 构造环境 | 代表性矿床 | 成矿时代/Ma | 参考文献 |
---|---|---|---|---|---|---|
增生-碰撞造山海底喷流(VMS)-岩浆热液型 Cu-Mo-Pb-Zn-Ag | 穿时复合 | VMS | 原特提斯弧后盆地 | 大坪掌Cu-Pb-Zn | 429±10 | Lehmann等[ |
古特提斯洋岛火山 | 老厂Cu-Pb-Zn-Ag | 323.6±2.8 | 陈觅等[ | |||
古特提斯洋中脊火山 | 铜厂街Cu | |||||
羊拉Cu | 296.1±7.0 | Zhan等[ | ||||
古特提斯陆内裂谷 | 鲁春Cu-Pb-Zn | 249~247 | 王保弟等[ | |||
斑岩-夕卡岩型 | 后碰撞陆内火山弧 | 羊拉Cu-Pb-Zn | 231~228 | 王彦斌等[ | ||
后碰撞拆沉伸展 | 老厂Mo、金腊Pb-Zn-Ag | 43.8±0.8 | 陈珲等[ | |||
增生-碰撞造山岩浆/热液Cu-Mo-Sn-W | 穿时复合 | 岩浆型 | 中特提斯裂谷盆地 | 大雪山Cu-Ni | 300.5 ± 1.6 | Wang等[ |
斑岩-夕卡岩型 | 古特提斯火山岛弧 | 普朗Cu、雪鸡坪Cu、浪都Cu | 230 ~ 199 | Li等[ | ||
中特提斯陆缘弧 | 核桃坪Pb-Zn、芦子园Fe-Pb-Zn、滇滩Fe | 约120 | Deng等[ | |||
新特提斯陆缘弧 | 连龙Sn-Pb-Zn、红山Cu-Mo、瓦促W-Mo | 97 ~ 76 | 杨立强等[ | |||
云英岩型 | 新特提斯陆缘弧 | 云龙Sn、小龙河Sn-W、来利山Sn-REE | 75 ~ 55 | Wang等[ | ||
碰撞造山-盆地卤水-岩浆热液型Pb-Zn-Ag-Cu | 同时复合/ 穿时复合 | 热液脉型 | 褶皱盆地 | 金满-连城Cu-Mo | 47.8±1.8 | Zhang等[ |
MVT型 | 前陆盆地 | 金顶Pb-Zn、白秧坪Pb-Zn | 32 ~21 | 王长明等[ | ||
浅成低温 热液型 | 走滑拉分分盆地 | 笔架山Sb、扎村Au、石磺厂As、黑龙潭Hg | 中-晚始新世 | 王长明等[ | ||
碰撞造山富碱斑岩Cu-Au和造山型Au复合成矿系统 | 穿时复合 | 斑岩-夕卡岩型 | 古缝合带 | 玉龙Cu矿、北衙Au、马厂箐Cu-Mo、哈播Cu-Au、铜厂Cu | 约35 | Deng等[ |
造山型 | 走滑剪切带 | 镇沅Au、金厂Au、大坪Au、长安Au | 27~21 | Deng等[ Gao等[ |
Table 2 Types and features of main composite metallogenic systems in Sanjiang Tethyan domain
复合成矿系统 | 复合模式 | 成矿作用类型 | 构造环境 | 代表性矿床 | 成矿时代/Ma | 参考文献 |
---|---|---|---|---|---|---|
增生-碰撞造山海底喷流(VMS)-岩浆热液型 Cu-Mo-Pb-Zn-Ag | 穿时复合 | VMS | 原特提斯弧后盆地 | 大坪掌Cu-Pb-Zn | 429±10 | Lehmann等[ |
古特提斯洋岛火山 | 老厂Cu-Pb-Zn-Ag | 323.6±2.8 | 陈觅等[ | |||
古特提斯洋中脊火山 | 铜厂街Cu | |||||
羊拉Cu | 296.1±7.0 | Zhan等[ | ||||
古特提斯陆内裂谷 | 鲁春Cu-Pb-Zn | 249~247 | 王保弟等[ | |||
斑岩-夕卡岩型 | 后碰撞陆内火山弧 | 羊拉Cu-Pb-Zn | 231~228 | 王彦斌等[ | ||
后碰撞拆沉伸展 | 老厂Mo、金腊Pb-Zn-Ag | 43.8±0.8 | 陈珲等[ | |||
增生-碰撞造山岩浆/热液Cu-Mo-Sn-W | 穿时复合 | 岩浆型 | 中特提斯裂谷盆地 | 大雪山Cu-Ni | 300.5 ± 1.6 | Wang等[ |
斑岩-夕卡岩型 | 古特提斯火山岛弧 | 普朗Cu、雪鸡坪Cu、浪都Cu | 230 ~ 199 | Li等[ | ||
中特提斯陆缘弧 | 核桃坪Pb-Zn、芦子园Fe-Pb-Zn、滇滩Fe | 约120 | Deng等[ | |||
新特提斯陆缘弧 | 连龙Sn-Pb-Zn、红山Cu-Mo、瓦促W-Mo | 97 ~ 76 | 杨立强等[ | |||
云英岩型 | 新特提斯陆缘弧 | 云龙Sn、小龙河Sn-W、来利山Sn-REE | 75 ~ 55 | Wang等[ | ||
碰撞造山-盆地卤水-岩浆热液型Pb-Zn-Ag-Cu | 同时复合/ 穿时复合 | 热液脉型 | 褶皱盆地 | 金满-连城Cu-Mo | 47.8±1.8 | Zhang等[ |
MVT型 | 前陆盆地 | 金顶Pb-Zn、白秧坪Pb-Zn | 32 ~21 | 王长明等[ | ||
浅成低温 热液型 | 走滑拉分分盆地 | 笔架山Sb、扎村Au、石磺厂As、黑龙潭Hg | 中-晚始新世 | 王长明等[ | ||
碰撞造山富碱斑岩Cu-Au和造山型Au复合成矿系统 | 穿时复合 | 斑岩-夕卡岩型 | 古缝合带 | 玉龙Cu矿、北衙Au、马厂箐Cu-Mo、哈播Cu-Au、铜厂Cu | 约35 | Deng等[ |
造山型 | 走滑剪切带 | 镇沅Au、金厂Au、大坪Au、长安Au | 27~21 | Deng等[ Gao等[ |
Fig.7 Distribution of main metallogenic systems and composite metallogenic systems in the Sanjiang Tethys: metallogenic systems related to accretionary orogeny (a), metallogenic systems related to collisional orogeny (b), and four kinds of typical composite metallogenic systems (c)
Fig.9 Model of composite metallogenic systems consisting of Late Carboniferous VMS Ag-Pb-Zn mineralization and Eocene porphyry-skarn Mo-Cu mineralization in Changning-Menglian suture. Adapted from [20-21,90].
Fig.11 Model of composite metallogenic systems consisting of Late Triassic porphyry Cu-Au mineralization and Late Cretaceous porphyry-skarn Cu-Mo mineralization in Yidun arc. Adapted from [141-142].
Fig.13 Model of composite metallogenic systems consisting of Early Cretaceous skarn Fe-Cu-Pb-Zn mineralization and Late Cretaceous to Paleogene vein-type Sn-W-REE mineralization in Tengchong-Baoshan block
Fig.15 Model of composite metallogenic systems consisting of Eocene porphyry Cu-Au-Mo mineralization and Oligocene orogenic Au mineralization in western margin of Yangtze Craton. Adapted from [102,105].
Fig.17 Model of composite metallogenic systems consisting of mesothermal vein type Cu-Ag mineralization, epithermal Sb-Au-Hg-As mineralization and MVT Pb-Zn mineralization in Lanping basin
[1] | 翟裕生, 邓军, 李晓波. 区域成矿学[M]. 北京: 地质出版社, 1999: 1-286. |
[2] |
ZHAI Y, DENG J. Outline of the mineral resources of China and their tectonic setting[J]. Australian Journal of Earth Sciences, 1996, 43(6): 673-685.
DOI URL |
[3] |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 7-27.
DOI URL |
[4] |
MUNTEAN J L, CLINE J S, SIMON A C, et al. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits[J]. Nature Geoscience, 2011, 4(2): 122-127.
DOI URL |
[5] |
LEE C T A, LUFFI P, CHIN E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 336(6077): 64-68.
DOI URL |
[6] |
GRIFFIN W L, BEGG G C, O'REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI URL |
[7] |
WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6(11): 917.
DOI URL |
[8] |
RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11): 911-916.
DOI URL |
[9] |
CHIARADIA M. Copper enrichment in arc magmas controlled by overriding plate thickness[J]. Nature Geoscience, 2014, 7(1): 43.
DOI URL |
[10] |
BOTCHARNIKOV R E, LINNEN R L, WILKE M, et al. High gold concentrations in sulphide-bearing magma under oxidizing conditions[J]. Nature Geoscience, 2011, 4(2): 112.
DOI URL |
[11] |
SUN W D, ARCULUS R J, KAMENETSKY V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 2004, 431(7011): 975.
DOI URL |
[12] | 翟裕生, 王建平, 彭润民, 等. 叠加成矿系统与多成因矿床研究[J]. 地学前缘, 2009, 16(6): 282-290. |
[13] | 常印佛, 周涛发, 范裕. 复合成矿与构造转换: 以长江中下游成矿带为例[J]. 岩石学报, 2012, 28(10): 3067-3075. |
[14] |
DENG J, WANG Q F, LI G J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50: 216-266.
DOI URL |
[15] | 邓军, 王长明, 李龚健, 等. 复合成矿系统理论: 揭开西南特提斯成矿之谜的关键[J]. 岩石学报, 2019, 35(5): 1303-1323. |
[16] | 莫宣学, 路凤香, 沈上越, 等. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993: 1-267. |
[17] | 潘桂棠, 徐强, 侯增谦, 等. 西南“三江”多岛弧造山过程、成矿系统与资源评价[M]. 北京: 地质出版社, 2003: 1-420. |
[18] | 侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4): 337-358. |
[19] | 李文昌, 潘桂棠, 侯增谦, 等. 西南“三江”多岛弧盆碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010. |
[20] |
DENG J, WANG Q F, LI G J, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437.
DOI URL |
[21] |
DENG J, WANG Q F, LI G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299.
DOI URL |
[22] | 邓军, 王庆飞, 李龚健. 复合造山和复合成矿系统: 三江特提斯例析[J]. 岩石学报, 2016, 32(8): 2225-2247. |
[23] | 翟裕生, 邓军, 汤中立. 古陆边缘成矿系统[M]. 北京: 地质出版社, 2002: 1002. |
[24] | 许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(6): 1697-1709. |
[25] |
ZHENG Y F, XIAO W J, ZHAO G C. Introduction to tectonics of China[J]. Gondwana Research, 2013, 23(4): 1189-1206.
DOI URL |
[26] |
NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: a retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29.
DOI URL |
[27] | 陈毓川, 王登红, 徐志刚. 中国重要矿产和区域成矿规律[M]. 北京: 地质出版社, 2015: 1-795. |
[28] | 许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806. |
[29] | 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11. |
[30] |
ALLEGRE CJ, COURTILLOT V, TAPPONNIER P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17.
DOI URL |
[31] | HIRN A. Features of the crust-mantle structure of Himalayas-Tibet:a comparison with seismic traverses of Alpine, Pyrenean and Variscan orogenic belts[J]. Philosophical Transactions of the Royal Society of London(A: Mathematical and Engineering Sciences), 1988, 326(1589): 17-32. |
[32] | MOLNAR P, LYON-CAEN H. Some simple physical aspects of the support, structure, and evolution of mountain belts[J]. Processes in Continental Lithospheric Deformation, 1988, 218(2): 179-207. |
[33] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[34] |
PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical geology, 1998, 145(3/4): 325-394.
DOI URL |
[35] |
PROUTEAU G, SCAILLET B, PICHAVANT M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust[J]. Nature, 2001, 410(6825): 197.
DOI URL |
[36] |
KIND R, YUAN X, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 2002, 298(5596): 1219-1221.
DOI URL |
[37] |
HAEUSSLER P J, BRADLEY D, GOLDFARB R, et al. Link between ridge subduction and gold mineralization in southern Alaska[J]. Geology, 1995, 23(11): 995-998.
DOI URL |
[38] | MAO J, WANG Y, ZHANG Z, et al. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas[J]. Science in China Series D: Earth Sciences, 2003, 46(8): 838-851. |
[39] |
ZHAI M, SANTOSH M. Metallogeny of the North China Craton: link with secular changes in the evolving Earth[J]. Gondwana Research, 2013, 24(1): 275-297.
DOI URL |
[40] | 邓军, 王长明, 李文. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 2014, 21(1): 52-64. |
[41] | DENG J, ZHAI Y S, MO X X, et al. Temporal-spatial distribution of metallic ore deposits in China and their geodynamic settings[C]// Reviews in economic geology. McLean: Society of Economic Geologists, 2019: 103-132. |
[42] |
YANG S, QU W, TIAN Y, et al. Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China: post-segregation diffusion of Os[J]. Chemical Geology, 2008, 247(3/4): 401-418.
DOI URL |
[43] |
ZHANG M, KAMO S L, LI C, et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita, 2010, 45(1): 3-9.
DOI URL |
[44] |
YUAN Z X, BAI G, WU C Y, et al. Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China[J]. Applied Geochemistry, 1992, 7(5): 429-442.
DOI URL |
[45] |
MAO J W, PIRAJNO F, ZHANG Z H, et al. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens(Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 184-203.
DOI URL |
[46] |
SHEN P, SHEN Y, PAN H, et al. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2012, 49: 99-115.
DOI URL |
[47] |
SUN T, QIAN Z Z, DENG Y F, et al. PGE and isotope(Hf-Sr-Nd-Pb)constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian orogenic belt, northwestern China[J]. Economic Geology, 2013, 108(8): 1849-1864.
DOI URL |
[48] |
XIA R, WANG C M, QING M, et al. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 66: 114-131.
DOI URL |
[49] |
CHEN Y J, ZHANG C, WANG P, et al. The Mo deposits of Northeast China: a powerful indicator of tectonic settings and associated evolutionary trends[J]. Ore Geology Reviews, 2017, 81: 602-640.
DOI URL |
[50] |
YUAN S, MAO J, COOK N J, et al. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China[J]. Ore Geology Reviews, 2015, 65: 283-293.
DOI URL |
[51] |
DENG J, WANG C, BAGAS L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong Peninsula, China: constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006.
DOI URL |
[52] |
SHELLNUTT J G, JAHN B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China[J]. Earth and Planetary Science Letters, 2010, 289(3/4): 509-519.
DOI URL |
[53] |
HOU T, ZHANG Z, ENCARNACION J, et al. The role of recycled oceanic crust in magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province, SW China[J]. Contributions to Mineralogy and Petrology, 2013, 165(4): 805-822.
DOI URL |
[54] |
HOU Z, YANG Z, LU Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
DOI URL |
[55] |
WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150: 68-94.
DOI URL |
[56] | 邓军, 王长明, 李龚健. 三江特提斯叠加成矿作用样式及过程[J]. 岩石学报, 2012, 28(5): 1349-1361. |
[57] | HSÜ K J, BERNOULLI D. Genesis of the Tethys and the Mediterranean[J]. Initial Reports of the Deep Sea Drilling Project, 1978, 42: 943-949. |
[58] |
SENGÖR A M C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications[J]. Nature, 1979, 279(5714): 590-593.
DOI URL |
[59] |
SENGÖR A M C. The geological exploration of Tibet[J]. Nature, 1981, 294(5840): 403-404.
DOI URL |
[60] | SENGÖR A M C, HSÜ K J. The Cimmerides of eastern Asia: history of the eastern end of Paleo-Tethys[J]. Societe Gologique de France Memoires, 1984, 147: 139-167. |
[61] | 李春昱, 王荃, 刘雪亚, 等. 亚洲大地构造图(1∶8000000)及其说明书[M]. 北京: 中国地图出版社, 1982. |
[62] | 黄汲清, 陈国铭, 陈炳蔚. 特提斯-喜马拉雅构造域初步分析[J]. 地质学报, 1984, 58(1): 1-17. |
[63] | 刘增乾, 李兴振, 叶庆同, 等. 三江地区构造岩浆带的划分与矿产分布规律[M]. 北京: 地质出版社, 1993. |
[64] | 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 1-231. |
[65] |
METCALFE I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context[J]. Gondwana Research, 2006, 9(1/2): 24-46.
DOI URL |
[66] |
METCALFE I. Palaeozoic-Mesozoic history of SE Asia[J]. Geological Society, London, Special Publications, 2011, 355(1): 7-35.
DOI URL |
[67] |
METCALFE I. Gondwana dispersion and Asian accretion:tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33.
DOI URL |
[68] | 沈上越, 冯庆来, 魏启荣, 等. 南澜沧江带南段原特提斯岛弧火山岩新证据[J]. 矿物岩石, 2008, 28(4): 59-63. |
[69] |
LEHMANN B, ZHAO X F, ZHOU M F, et al. Mid-Silurian back-arc spreading at the northeastern margin of Gondwana: the Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China[J]. Gondwana Research, 2013, 24(2): 648-663.
DOI URL |
[70] | 陈觅, 黄智龙, 罗泰义, 等. 滇西澜沧老厂大型银铅锌多金属矿床火山岩锆石SHRIMP定年及其地质意义[J]. 矿物学报, 2010, 30(4): 456-462. |
[71] |
HOU Z Q, WANG L Q, ZAW K, et al. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China[J]. Ore Geology Reviews, 2003, 22(3/4): 177-199.
DOI URL |
[72] | ZHAN M G, LU Y F, DONG F L, et al. Genesis of Yangla banded skarn-hosted copper deposit in Tethys orogenic belt of southwestern China[J]. Journal of China University of Geosciences, 1999, 10(1): 58-61. |
[73] |
LI W C, ZENG P S, HOU Z Q, et al. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, Southwest China[J]. Economic Geology, 2011, 106(1): 79-92.
DOI URL |
[74] | 陈莉, 王立全, 王保弟, 等. 滇西云县-景谷火山弧带官房铜矿床成因: 流体包裹体及年代学证据[J]. 岩石学报, 2013, 29(4): 1279-1289. |
[75] |
WANG Q, DENG J, LI G, et al. Geochronological, petrological, and geochemical studies of the Daxueshan magmatic Ni-Cu sulfide deposit in the Tethyan orogenic belt, Southwest China[J]. Economic Geology, 2018, 113(6): 1307-1332.
DOI URL |
[76] | 杨立强, 高雪, 和文言. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 2015, 31(11): 3155-3170. |
[77] | WANG C, DENG J, WANG Q, et al. Geochemistry and zircon U-Pb geochronology associated with tin-bearing granitoids: constraints on two continental collisions in the Tengchong-Baoshan area, Yunnan Province[J]. Acta Geologica Sinica(English Edition), 2013, 87(Suppl 1): 783-785. |
[78] |
ZHANG J, WEN H, QIU Y, et al. Ages of sediment-hosted Himalayan Pb-Zn-Cu-Ag polymetallic deposits in the Lanping basin, China: Re-Os geochronology of molybdenite and Sm-Nd dating of calcite[J]. Journal of Asian Earth Sciences, 2013, 73: 284-295.
DOI URL |
[79] | 王长明, 陈晶源, 杨立飞, 等. 三江特提斯兰坪盆地构造-流体-成矿系统[J]. 岩石学报, 2017, 33(7): 1957-1977. |
[80] |
GAO L, WANG Q, DENG J, et al. Relationship between orogenic gold mineralization and crustal shearing along Ailaoshan-Red River Belt, southeastern Tibetan Plateau: new constraint from paleomagnetism[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2225-2242.
DOI URL |
[81] | 李才, 吴彦旺, 王明, 等. 青藏高原泛非—早古生代造山事件研究重大进展: 冈底斯地区寒武系和泛非造山不整合的发现[J]. 地质通报, 2010, 29(12): 1733-1736. |
[82] |
ZHU D C, ZHAO Z D, NIU Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328: 290-308.
DOI URL |
[83] | WANG Y, XING X, CAWOOD P A, et al. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana[J]. Lithos, 2013, 182: 67-85. |
[84] |
CAWOOD P A, JOHNSON M R, NEMCHIN A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.
DOI URL |
[85] |
CAWOOD P A, WANG Y, XU Y, et al. Locating South China in Rodinia and Gondwana: a fragment of Greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906.
DOI URL |
[86] |
LI G J, WANG Q F, HUANG Y H, et al. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block: implications for the early Paleozoic tectonic evolution along East Gondwana[J]. Lithos, 2016, 245: 76-92.
DOI URL |
[87] | 李静, 孙载波, 黄亮, 等. 滇西勐库退变质榴辉岩的P-T-t轨迹及地质意义[J]. 岩石学报, 2017, 33(7): 2285-2301. |
[88] |
WANG H, LIU F, LI J, et al. Petrology, geochemistry and P-T-t path of lawsonite-bearing retrograded eclogites in the Changning-Menglian orogenic belt, southeast Tibetan Plateau[J]. Journal of Metamorphic Geology, 2019, 37(4), 439-478.
DOI URL |
[89] |
ZHU D C, ZHAO Z D, NIU Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[90] |
LI G, DENG J, WANG Q, et al. Metallogenic model for the Laochang Pb-Zn-Ag-Cu volcanogenic massive sulfide deposit related to a Paleo-Tethys OIB-like volcanic center, SW China[J]. Ore Geology Reviews, 2015, 70: 578-594.
DOI URL |
[91] | 王保弟, 王立全, 王冬兵, 等. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义[J]. 岩石矿物学杂志, 2011, 30(1): 25-33. |
[92] |
CHEN F C, DENG J, SHU Q H, et al. Geology, fluid inclusion and stable isotopes(O, S)of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China[J]. Ore Geology Reviews, 2017, 90: 913-927.
DOI URL |
[93] |
CHEN F C, DENG J, WANG Q F, et al. The source and evolution of ore fluids in the Heiniuwa gold deposit, Baoshan block, Sanjiang region: constraints from sulfide trace element, fluid inclusion and stable isotope studies[J]. Ore Geology Reviews, 2018, 95: 725-745.
DOI URL |
[94] |
XU Y G, YANG Q J, LAN J B, et al. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes[J]. Journal of Asian Earth Sciences, 2012, 53: 151-175.
DOI URL |
[95] |
WANG X S, BI X W, LENG C B, et al. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W)mineralization in the southern Yidun Arc, SW China: implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 2014, 61: 73-95.
DOI URL |
[96] |
CHEN X C, HU R Z, BI X W, et al. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China[J]. Mineralium Deposita, 2014, 49(7): 843-860.
DOI URL |
[97] | 邓军, 张静, 王庆飞. 中国西南特提斯典型复合成矿系统及其深部驱动机制研究进展[J]. 岩石学报, 2018, 34(5): 1229-1238. |
[98] |
CAO H W, PEI Q M, ZHANG S T, et al. Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China[J]. Journal of Asian Earth Sciences, 2017, 137: 220-240.
DOI URL |
[99] | 周道卿, 曹宝宝, 李龚健, 等. 西南三江兰坪盆地隐伏岩体探测及其成矿效应[J]. 岩石学报, 2015, 31(11): 3466-3476. |
[100] | 杨立飞, 石康兴, 王长明, 等. 西南三江兰坪盆地金满铜矿床成因研究: 来自铜和硫同位素的联合约束[J]. 岩石学报, 2016, 32(8): 2392-2406. |
[101] | HOU Z Q, MA H W, KHIN Z, et al. The Himalayan Yulong porphyry copper belt:product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 2003, 98(1): 125-145. |
[102] |
DENG J, WANG Q F, LI G J, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70: 457-485.
DOI URL |
[103] |
HE W Y, MO X X, HE Z H, et al. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, Southwest China[J]. Economic Geology, 2015, 110(6): 1625-1641.
DOI URL |
[104] | 黄钰涵, 邓军, 李龚健, 等. 滇西老厂隐伏斑岩-夕卡岩型钼矿床成矿过程与物质来源[J]. 岩石学报, 2017, 33(7): 2099-2114. |
[105] |
DENG J, WANG Q F, LI G J, et al. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China[J]. Ore Geology Reviews, 2015, 65: 42-54.
DOI URL |
[106] |
DENG J, WANG Q F. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274.
DOI URL |
[107] | WANG Q F, GROVES D I, DENG J, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2019. https://doi.org/10.1007/s00126-019-00922-3. |
[108] |
XIAO C, WANG Q, LI G, et al. Subduction-related hot spring-type gold mineralization in the central Tengchong block, southwestern China[J]. Ore Geology Reviews, 2017, 90: 987-997.
DOI URL |
[109] | 于华之, 王庆飞, 李建荣, 等. 南澜沧江带勐满热泉型金矿床成矿作用: 热液蚀变与元素地球化学制约[J]. 岩石学报, 2017, 33(7): 2202-2212. |
[110] | 邓军, 杨立强, 王长明. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 2011, 27(9): 2501-2509. |
[111] | 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2): 332-351. |
[112] |
PENG T, WANG Y, ZHAO G, et al. Arc-like volcanic rocks from the southern Lancangjiang zone, SW China: geochronological and geochemical constraints on their petrogenesis and tectonic implications[J]. Lithos, 2008, 102(1/2): 358-373.
DOI URL |
[113] |
HENNIG D, LEHMANN B, FREI D, et al. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China[J]. Lithos, 2009, 113(3/4): 408-422.
DOI URL |
[114] | 朱维光, 钟宏, 王立全, 等. 云南民乐铜矿床中玄武岩和流纹斑岩的成因: 年代学和地球化学制约[J]. 岩石学报, 2011, 27(9): 2694-2708. |
[115] |
ZI J W, CAWOOD P A, FAN W M, et al. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen(SW China) in response to closure of the Paleo-Tethys[J]. Lithos, 2012, 140/141: 166-182.
DOI URL |
[116] |
ZI J W, CAWOOD P A, FAN W M, et al. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China[J]. Lithos, 2012, 144/145: 145-160.
DOI URL |
[117] | 杨学俊, 贾小川, 熊昌利, 等. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2): 264-276. |
[118] |
WANG C, DENG J, SANTOSH M, et al. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen[J]. Journal of Asian Earth Sciences, 2015, 113(Part 2): 656-676.
DOI URL |
[119] |
DENG J, WANG C M, ZI J W, et al. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture: new zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith[J]. Gondwana Research, 2018, 62: 75-92.
DOI URL |
[120] |
ZHANG K J, XIA B, ZHANG Y X, et al. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 2014, 210/211: 278-288.
DOI URL |
[121] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
DOI URL |
[122] |
CHUNG S L, LEE T Y, LO C H, et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 1997, 25(4): 311-314.
DOI URL |
[123] |
WANG Y, FAN W, ZHANG Y, et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: implications for early Oligocene tectonic extrusion of SE Asia[J]. Tectonophysics, 2006, 418(3/4): 235-254.
DOI URL |
[124] |
CAO S, LIU J, LEISS B, et al. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research, 2011, 19(4): 975-993.
DOI URL |
[125] | 冯彩霞, 毕献武, 胡瑞忠, 等. 兰坪盆地白秧坪Cu-Pb-Zn-Ag多金属矿集区元素共生分异机制及物质来源[J]. 岩石学报, 2011, 27(9): 2609-2624. |
[126] |
TANG Y Y, BI X W, FAYEK M, et al. Genesis of the Jinding Zn-Pb deposit, Northwest Yunnan Province, China: constraints from rare earth elements and noble gas isotopes[J]. Ore Geology Reviews, 2017, 90: 970-986.
DOI URL |
[127] | 李文昌, 尹光侯, 余海军, 等. 滇西北格咱火山-岩浆弧斑岩成矿作用[J]. 岩石学报, 2011, 27(9): 2541-2552. |
[128] | 李文昌, 余海军, 尹光候. 西南“三江”格咱岛弧斑岩成矿系统[J]. 岩石学报, 2013, 29(4): 1129-1144. |
[129] |
WANG B Q, WANG W, ZHOU M F. Provenance and tectonic setting of the Triassic Yidun Group, the Yidun terrane, Tibet[J]. Geoscience Frontiers, 2013, 4(6): 765-777.
DOI URL |
[130] | 王彦斌, 韩娟, 曾普胜, 等. 云南德钦羊拉大型铜矿区花岗闪长岩的锆石U-Pb年龄、 Hf同位素特征及其地质意义[J]. 岩石学报, 2010, 26(6): 1833-1844. |
[131] | 陈珲, 李峰, 坚润堂, 等. 云南澜沧老厂花岗斑岩锆石SHRIMP定年及其地质意义[J]. 地质学报, 2010, 84(4): 485-491. |
[132] |
UENO K, WANG Y, WANG X. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China: an overview[J]. Island Arc, 2003, 12(2): 145-161.
DOI URL |
[133] | 李峰, 范柱国, 李保珠. 滇西思茅大平掌矿区火山岩特征及其构造环境[J]. 大地构造与成矿学, 2003, 27(1): 48-55. |
[134] | 钟宏, 胡瑞忠, 周新华, 等. 云南思茅大平掌矿区火山岩的地球化学特征及构造意义[J]. 岩石学报, 2004, 20(3): 567-574. |
[135] |
DURETZ T, GERYA T V, MAY D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1/2): 244-256.
DOI URL |
[136] | 张彩华, 刘继顺, 刘德利. 滇西南澜沧江带官房地区三叠纪火山岩地质地球化学特征及其构造环境[J]. 岩石矿物学杂志, 2006, 25(5): 377-386. |
[137] | 韦诚, 戚学祥, 常裕林, 等. 澜沧江构造带中南段小定西组火山岩形成时代的厘定及其构造意义[J]. 地质学报, 2016, 90(11): 3192-3214. |
[138] | 李峰, 陈珲, 鲁文举, 等. 云南澜沧老厂花岗斑岩形成年龄及地质意义[J]. 大地构造与成矿学, 2010, 34(1): 84-91. |
[139] | 李峰, 鲁文举, 杨映忠, 等. 云南澜沧老厂斑岩钼矿成岩成矿时代研究[J]. 现代地质, 2009, 23(6): 1049-1055. |
[140] | 杨帆, 李峰, 陈珲, 等. 云南澜沧老厂隐伏花岗斑岩体地球化学特征及构造环境[J]. 岩石矿物学杂志, 2012, 31(1): 39-49. |
[141] |
CHEN J L, XU J F, REN J B, et al. Late Triassic E-MORB-like basalts associated with porphyry Cu-deposits in the southern Yidun continental arc, eastern Tibet: evidence of slab-tear during subduction?[J]. Ore Geology Reviews, 2017, 90: 1054-1062.
DOI URL |
[142] |
YANG L Q, DENG J, GAO X, et al. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit: implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau[J]. Ore Geology Reviews, 2017, 81: 1015-1032.
DOI URL |
[143] | 侯增谦, 侯立纬, 叶庆同, 等. 三江义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床[M]. 北京: 地震出版社, 1995. |
[144] | 侯增谦, 曲晓明, 周继荣, 等. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录[J]. 地质学报, 2001, 75(4): 484-497. |
[145] | 高雪. 义敦地体晚白垩世与侵入岩有关的多金属成矿作用[D]. 北京: 中国地质大学(北京), 2018. |
[146] |
QU X M, HOU Z Q, ZHOU S G. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China[J]. Resource Geology, 2002, 52(2): 163-172.
DOI URL |
[147] |
YANG L Q, DENG J, DILEK Y, et al. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics[J]. Lithos, 2016, 245: 258-273.
DOI URL |
[148] |
RIDD M F. East flank of the Sibumasu block in NW Thailand and Myanmar and its possible northward continuation into Yunnan: a review and suggested tectono-stratigraphic interpretation[J]. Journal of Asian Earth Sciences, 2015, 104: 160-174.
DOI URL |
[149] |
XIE J C, ZHU D C, DONG G, et al. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation[J]. Gondwana Research, 2016, 39: 217-229.
DOI URL |
[150] |
LIAO S Y, WANG D B, TANG Y, et al. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: implications for the breakup of eastern Gondwana’s northern margin[J]. Geological Society of America Bulletin, 2015, 127(9/10): 1313-1330.
DOI URL |
[151] | 黄华, 张长青, 周云满, 等. 云南保山金厂河铁铜铅锌多金属矿床Rb-Sr等时线测年及其地质意义[J]. 矿床地质, 2014, 33(1): 123-136. |
[152] |
YANG Y, YE L, CHENG Z, et al. Origin of fluids in the Hetaoping Pb-Zn deposit, Baoshan-Narong-Dongzhi block metallogenic belt, Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2013, 73: 362-371.
DOI URL |
[153] |
XU R, LI W C, DENG M G, et al. Genesis of the superlarge Luziyuan Zn-Pb-Fe(-Cu)distal skarn deposit in western Yunnan(SW China): insights from ore geology and CHOS isotopes[J]. Ore Geology Reviews, 2019, 107: 944-959.
DOI URL |
[154] | 要悦稳, 张静, 马楠, 等. 云南滇滩铁矿夕卡岩蚀变分带特征及地质意义[J]. 矿床地质, 2012, 31(增刊1): 143-144. |
[155] | 崔晓琳. 西南三江腾冲-梁河成矿带白垩纪铁和锡成矿作用研究[D]. 北京: 中国地质大学(北京), 2019. |
[156] | WOOD S A, SAMSON I M. Solubility of ore minerals and complexation of ore metals in hydrothermal solutions[C]// Reviews in economic geology. McLean: Society of Economic Geologists, 1998: 33-80. |
[157] | CHEN X C, HU R Z, BI X W, et al. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes[J]. Lithos, 2015, 212/213/214/215: 93-110. |
[158] |
CAO H W, ZOU H, ZHANG Y H, et al. Late Cretaceous magmatism and related metallogeny in the Tengchong area: evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China[J]. Ore Geology Reviews, 2016, 78: 196-212.
DOI URL |
[159] | 马楠, 邓军, 王庆飞, 等. 云南腾冲大松坡锡矿成矿年代学研究: 锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MS U-Pb年龄证据[J]. 岩石学报, 2013, 29(4): 1223-1235. |
[160] | 廖世勇, 王冬兵, 唐渊, 等. “三江”云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 岩石矿物学杂志, 2013, 32(4): 450-462. |
[161] | 徐容, 邓军, 程韩宇, 等. 华南板块西缘和腾冲-保山地块晚白垩世岩浆活动及Sn成矿作用对比: 年代学, 地球化学和动力学背景[J]. 岩石学报, 2018, 34(5): 1271-1284. |
[162] |
HE W Y, MO X X, YANG L Q, et al. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: implications for magma mixing/mingling and mineralization[J]. Gondwana Research, 2016, 40: 230-248.
DOI URL |
[163] |
BAO X, YANG L, HE W, et al. Importance of magmatic water content and oxidation state for porphyry-style Au mineralization: an example from the giant Beiya Au deposit, SW China[J]. Minerals, 2018, 8(10): 441.
DOI URL |
[164] |
ZHOU H Y, SUN X M, COOK N J, et al. Nano-to micron-scale particulate gold hosted by magnetite: a product of gold scavenging by bismuth melts[J]. Economic Geology, 2017, 112(4): 993-1010.
DOI URL |
[165] | 应汉龙. 云南墨江镍金矿床富金石英脉的40Ar/39Ar快中子活化年龄[J]. 地质科学, 2002, 37(1): 107-109. |
[166] | 孙晓明, 熊德信, 石贵勇, 等. 云南哀牢山金矿带大坪韧性剪切带型金矿40Ar-39Ar定年[J]. 地质学报, 2007, 81(1): 88-92. |
[167] | WANG J, QI L, YIN A, et al. Emplacement age and PGE geochemistry of lamprophyres in the Laowangzhai gold deposit, Yunnan, SW China[J]. Science in China Series D: Earth Sciences, 2001, 44(1): 146-154. |
[168] |
SYMONS D T, LEWCHUK M T, KAWASAKI K, et al. The Reocín zinc-lead deposit, Spain: paleomagnetic dating of a late Tertiary ore body[J]. Mineralium Deposita, 2009, 44(8): 867.
DOI URL |
[169] |
CHUNG S L, LO C H, LEE T Y, et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago[J]. Nature, 1998, 394(6695): 769.
DOI URL |
[170] | 曾普胜, 莫宣学, 喻学惠. 滇西富碱斑岩带的Nd, Sr, Pb同位素特征及其挤压走滑背景[J]. 岩石矿物学杂志, 2002, 21(3): 231-241. |
[171] | 董方浏, 莫宣学, 侯增谦, 等. 云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义[J]. 岩石矿物学杂志, 2005, 24(2): 103-109. |
[172] | 葛良胜, 杨嘉禾, 郭晓东, 等. 滇西北地区(近)东西向隐伏构造带的存在及证据[J]. 云南地质, 1999, 18(2): 153-165. |
[173] | 张锦让, 温汉捷, 邹志超, 等. 云南兰坪盆地西缘脉状铜矿床富CO2流体来源的He和Ar同位素证据[J]. 地球化学, 2015, 44(2): 167-177. |
[174] |
WANG C M, BAGAS L, CHEN J Y, et al. The genesis of the Liancheng Cu-Mo deposit in the Lanping Basin of SW China: constraints from geology, fluid inclusions, and Cu-S-H-O isotopes[J]. Ore Geology Reviews, 2018, 92: 113-128.
DOI URL |
[175] | 刘家军, 李朝阳, 潘家永, 等. 兰坪-思茅盆地砂页岩中铜矿床同位素地球化学[J]. 矿床地质, 2000, 19(3): 223-234. |
[176] | 侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2): 123-144. |
[177] | 宋玉财, 侯增谦, 杨天南, 等. “三江”喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J]. 岩石矿物学杂志, 2011, 30(3): 355-380. |
[178] | 肖昌浩. 三江中南段低温热液矿床成矿系列研究[D]. 北京: 中国地质大学(北京), 2013. |
[179] | 佟子达, 张静, 李腾建. 滇西笔架山锑矿床地质特征与流体包裹体研究[J]. 岩石学报, 2016, 32(8): 2379-2391. |
[180] |
DENG J, WANG C, BAGAS L, et al. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: evidence from Zn and in-situ S isotopes[J]. Ore Geology Reviews, 2017, 90: 943-957.
DOI URL |
[181] |
TANG Y Y, BI X W, FAYEK M, et al. Microscale sulfur isotopic compositions of sulfide minerals from the Jinding Zn-Pb deposit, Yunnan Province, Southwest China[J]. Gondwana Research, 2014, 26(2): 594-607.
DOI URL |
[182] |
XUE C, ZENG R, LIU S, et al. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: a review[J]. Ore Geology Reviews, 2007, 31(1/2/3/4): 337-359.
DOI URL |
[183] |
LI M L, LIU S A, XUE C J, et al. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18.
DOI URL |
[184] |
FRIMMEL H E. Genesis of the world’s largest gold deposits[J]. Science, 2002, 297(5588): 1815-1817.
DOI URL |
[185] | 邓军, 葛良胜, 杨立强. 构造动力体制与复合造山作用: 兼论三江复合造山带时空演化[J]. 岩石学报, 2013, 29(4): 1099-1114. |
[186] |
HOU Z, PAN X, LI Q, et al. The giant Dexing porphyry Cu-Mo-Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting[J]. Mineralium Deposita, 2013, 48(8): 1019-1045.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||