Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (4): 150-157.DOI: 10.13745/j.esf.sf.2020.4.45
Previous Articles Next Articles
ZHU Pingping(), CHENG Qiuming, ZHOU Yuanzhi, ZHANG Yuwei, SUN Jiazhen
Received:
2019-09-15
Revised:
2020-04-20
Online:
2020-07-25
Published:
2020-07-25
CLC Number:
ZHU Pingping, CHENG Qiuming, ZHOU Yuanzhi, ZHANG Yuwei, SUN Jiazhen. Plate reconstruction based on fractal theory[J]. Earth Science Frontiers, 2020, 27(4): 150-157.
[1] | 李三忠, 余珊, 赵淑娟, 等. 超大陆旋回与全球板块重建趋势[J]. 海洋地质与第四纪地质, 2015, 35(1):51-60. |
[2] | 李三忠, 余珊, 赵淑娟, 等. 超大陆与全球板块重建派别[J]. 海洋地质与第四纪地质, 2014, 34(6):97-117. |
[3] | WEGENER A. The origins of the continents[J]. Journal of Geodynamics, 2001, 32:29-63. |
[4] | SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3):212-270. |
[5] | MCPHEE P J, VAN HINSBERGEN D J J. Tectonic reconstruction of Cyprus reveals Late Miocene continental collision of Africa and Anatolia[J]. Gondwana Research, 2019, 68:158-173. |
[6] |
GURNIS M, YANG T, CANNON J, et al. Global tectonic reconstructions with continuously deforming and evolving rigid plates[J]. Computers and Geosciences, 2018, 116:32-41.
DOI URL |
[7] |
WEGENER A. The origins of the continents[J]. Geologische Rundschau, 1915, 3:276-292.
DOI URL |
[8] | LIU S F, GURNIS M, MA P F, et al. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200Ma[J]. Earth-Science Reviews, 2017, 175:114-142. |
[9] |
CHENG Q M. The perimeter-area fractal model and its application to geology[J]. Mathematical Geology, 1995, 27(1):69-82.
DOI URL |
[10] |
CHENG Q M. The gliding box method for multifractal modeling[J]. Computers and Geosciences, 1999, 25(9):1073-1079.
DOI URL |
[11] |
WANG Z J, CHENG Q M, CAO L, et al. Fractal modelling of the microstructure property of quartz mylonite during deformation process[J]. Mathematical Geology, 2007, 39(1):53-68.
DOI URL |
[12] |
CHENG Q M. Non-linear theory and Power-Law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5):503-532.
DOI URL |
[13] |
ZUO R G, CHENG Q M, AGTERBERG F P, et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration, 2009, 101(3):225-235.
DOI URL |
[14] | MALLARD C, COLTICE N, SETON M, et al. Subduction controls the distribution and fragmentation of Earth's tectonic plates[J]. Nature, 2016, 535(7610):140-143. |
[15] |
TURCOTTE D L. Fractals in petrology[J]. Lithos, 2002, 65(3/4):261-271.
DOI URL |
[16] | VERMEESCH P. Tectonic discrimination diagrams revisited[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6):1-55. |
[17] |
RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8):1515-1533.
DOI URL |
[18] | 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651. |
[19] | 侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带: Ⅰ. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358. |
[20] | 侯增谦, 潘桂棠, 王安建, 等. 青藏高原碰撞造山带: Ⅱ. 晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5):521-543. |
[21] |
MATTHEWS K J, HALE A J, GURNIS M, et al. Dynamic subsidence of Eastern Australia during the Cretaceous[J]. Gondwana Research, 2011, 19(2):372-383.
DOI URL |
[22] |
RICHARDS J P. Making faults run backwards: the Wilson Cycle and ore deposits[J]. Canadian Journal of Earth Sciences, 2014, 51(3):266-271.
DOI URL |
[23] | 张洪瑞, 侯增谦. 大陆碰撞造山样式与过程: 来自特提斯碰撞造山带的实例[J]. 地质学报, 2015, 89(9):1539-1559. |
[24] | RICHARDS J P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision[J]. Ore Geology Reviews, 2015, 70:323-345. |
[25] |
MATTHEWS K J, MALONEY K T, ZAHIROVIC S, et al. Global plate boundary evolution and kinematics since the late Paleozoic[J]. Global and Planetary Change, 2016, 146:226-250.
DOI URL |
[26] | 刘少峰, 王成善. 构造古地理重建与动力地形[J]. 地学前缘, 2016, 23(6):61-79. |
[27] | 丁林, SATYBAEV M, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47(3):293-309. |
[28] | 李晓峰, 华仁民, 马东升, 等. 大陆岩石圈伸展与斑岩铜矿成矿作用[J]. 岩石学报, 2019, 35(1):76-88. |
[29] |
MANDELBROT B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3775):636.
DOI URL |
[30] |
MANDELBROT B B, PASSOJA D E, PAULLAY A J. Fractal character of fracture surfaces of metal[J]. Nature, 1984, 308(5961):721-722.
DOI URL |
[31] | BARTON C C, TEBBENS S F. Fractals in the Earth sciences[M]. New York: Spring, 1995: 1-265. |
[32] |
SORNETTE D, PISARENKO V. Fractal plate tectonics[J]. Geophysical Research Letters, 2003, 30(3):1105.
DOI URL |
[33] | 申维. 中国白垩纪矿床时空分布的分形分析[J]. 地质力学学报, 2008, 14(1):57-64. |
[34] | ZUO R G, CHENG Q M, XIA Q L, et al. Application of fractal models to distinguish between different mineral phases[J]. Mathematical Geosciences, 2009, 41(1):71-80. |
[35] |
XIE S Y, CHENG Q M, ZHANG SS, et al. Assessing microstructures of pyrrhotites in basalts by multifractal analysis[J]. Nonlinear Processes in Geophysics, 2010, 17(4):319-327.
DOI URL |
[36] |
ALI E H M, KHAKZAD A, LOTFI M, et al. Prospecting of Ni mineralization using fractal models based on lithogeochemical data in Patang area, Eastern Iran[J]. Arabian Journal of Geosciences, 2015, 8(11):9667-9677.
DOI URL |
[37] | RANGUELOV B, IVANOV Y. Fractal properties of the elements of plate tectonics[J]. Journal of Mining and Geological Sciences, 2017, 60:83-89. |
[38] | ZUO R G. A fractal measure of mass transfer in fluid-rock interaction[J]. Ore Geology Reviews, 2018, 95:569-574. |
[39] |
CHENG Q M. Singularity analysis of global zircon U-Pb age series and implication of continental crust evolution[J]. Gondwana Research, 2017, 51:51-63.
DOI URL |
[40] |
CHEN G X, CHENG Q M. Cyclicity and persistence of Earth's evolution over time: wavelet and fractal analysis[J]. Geophysical Research Letters, 2018, 45(16):8223-8230.
DOI URL |
[41] |
CHENG Q M. Singularity analysis of magmatic flare-ups caused by India-Asia collisions[J]. Journal of Geochemical Exploration, 2018, 189(Suppl I):25-31.
DOI URL |
[42] | BRINKHOFF L A, SAVIGNY C V, RANDALL C E, et al. The fractal perimeter dimension of noctilucent clouds: sensitivity analysis of the area-perimeter method and results on the seasonal and hemispheric dependence of the fractal dimension[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127:66-72. |
[43] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41.
DOI URL |
[44] |
RICHARDS J P, MUMIN A H. Magmatic-hydrothermal processes within an evolving Earth: iron oxide-copper-gold and porphyry Cu-Mo-Au deposits[J]. Geology, 2013, 41(7):767-770.
DOI URL |
[45] | WANG R, WEINBERG R F, COLLINS W J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181:122-143. |
[46] | RICHARDS J P, RAZAVI A M, SPELL T L, et al. Magmatic evolution and porphyry-epithermal mineralization in the Taftan volcanic complex, southeastern Iran[J]. Ore Geology Reviews, 2018, 95:258-279. |
[47] |
RICHARDS J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3):247-250.
DOI URL |
[48] |
HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3):643-650.
DOI URL |
[49] |
CHIARADIA M. Copper enrichment in arc magmas controlled by over riding plate thickness[J]. Nature Geoscience, 2013, 7(1):43-46.
DOI URL |
[50] | 芮宗瑶, 张立生, 陈振宇, 等. 斑岩铜矿的源岩或源区探讨[J]. 岩石学报, 2004(2):229-238. |
[51] |
HU R Z, BURNARD P G, BI X W, et al. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China[J]. Chemical Geology, 2004, 203(3):305-317.
DOI URL |
[52] | 胡瑞忠, 毛景文, 范蔚茗, 等. 华南陆块陆内成矿作用的一些科学问题[J]. 地学前缘, 2010, 17(2):13-26. |
[53] |
GOLDFARB R J, BRADLEY D, LEACH D L. Secular variation in economic geology[J]. Economic Geology, 2010, 105(3):459-465.
DOI URL |
[54] |
GROVES D I, VIELREICHER R M, GOLDFARB R J, et al. Controls on the heterogeneous distribution of mineral deposits through time[J]. Geological Society of London, Special Publication, 2005, 248:71-101.
DOI URL |
[55] | 李三忠, 索艳慧, 刘博, 等. 微板块构造理论: 全球洋内与陆缘微地块研究的启示[J]. 地学前缘, 2018, 25(5):324-356. |
[56] |
LI S, SUO Y, LI X, et al. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle[J]. Earth-Science Reviews, 2018, 185:1029-1064.
DOI URL |
[57] |
REZEAU H, MORITZ R, WOTZLAW J F, et al. Temporal and genetic link between incremental pluton assembly and pulsed porphyry Cu-Mo formation in accretionary orogens[J]. Geology, 2016, 44(8):627-630.
DOI URL |
[58] |
GRONDAHL C, ZAJACZ Z. Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits: the Bingham Canyon example[J]. Earth and Planetary Science Letters, 2017, 480:53-65.
DOI URL |
[59] | 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12):1779-1817. |
[60] |
ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 47(2):135-138.
DOI URL |
[61] | 侯增谦. 大陆碰撞成矿论[J]. 地质学报, 2010, 84(1):30-58. |
[62] |
WU W B, NI S D, IRVING J. Inferring Earth's discontinuous chemical layering from the 660-kilometer boundary topography[J]. Science, 2019, 363(6428):736-740.
DOI URL |
[63] |
PARMAN S W. Helium isotopic evidence for episodic mantle melting and crustal growth[J]. Nature, 2007, 446(7138):900-903.
DOI URL |
[64] |
PEARSON D G, PARMAN S W, NOWELL G M. A link between large mantle melting events and continent growth seen in osmium isotopes[J]. Nature, 2007, 449(7159):202.
DOI URL |
[65] |
YUAN H Y. Secular change in Archaean crust formation recorded in Western Australia[J]. Nature Geoscience, 2015, 8(10):808-813.
DOI URL |
[66] | 郑永飞, 陈伊翔, 戴立群, 等. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带[J]. 中国科学: 地球科学, 2015, 45(6):711-735. |
[67] |
LOVEJOY S, SCHERTZER D. Scaling and multifractal fields in the solid earth and topography[J]. Nonlinear Processes in Geophysics, 2007, 14(4):293-315.
DOI URL |
[68] |
NEWMAN M. Power laws, Pareto distributions and Zipf's law[J]. Contemporary Physics, 2005, 46(5):323-351.
DOI URL |
[69] |
BURET Y, VON QUADT A, HEINRICH C, et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)[J]. Earth and Planetary Science Letters, 2016, 450:120-131.
DOI URL |
[70] |
MARSH T M, EINAUDI M T, MCWILLIAMS M. 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile[J]. Economic Geology, 1997, 92:784-806.
DOI URL |
[71] |
REYNOLDS P, RAVENHURST C, ZENTILLI M, et al. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile[J]. Chemical Geology, 1998, 148(1):45-60.
DOI URL |
[72] |
LI X F, HU R Z, RUSK B, et al. U-Pb and Ar-Ar geochronology of the Fujiawu porphyry Cu-Mo deposit, Dexing district, Southeast China: implications for magmatism, hydrothermal alteration, and mineralization[J]. Journal of Asian Earth Sciences, 2013, 74:330-342.
DOI URL |
[73] |
BARRA F, ALCOTA H, RIVERA S, et al. Timing and formation of porphyry Cu-Mo mineralization in the Chuquicamata district, northern Chile: new constraints from the Toki cluster[J]. Mineralium Deposita, 2013, 48(5):629-651.
DOI URL |
[74] |
JAGOUTZ O, ROYDEN L, HOLT A F, et al. Anomalously fast convergence of India and Eurasia caused by double subduction[J]. Nature Geoscience, 2015, 8(6):475-478.
DOI URL |
[75] |
VOICE P J, KOWALEWSKI M, ERIKSSON K A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains[J]. The Journal of Geology, 2011, 119(2):109-126.
DOI URL |
[76] |
BELOUSOVA E A, KOSTITSYN Y A, GRIFFIN W L, et al. The growth of the continental crust: constraints from zircon Hf-isotope data[J]. Lithos, 2010, 119(3/4):457-466.
DOI URL |
[77] |
SPENCER C J, CAWOOD P A, HAWKESWORTH C J, et al. Proterozoic onset of crustal reworking and collisional tectonics: reappraisal of the zircon oxygen isotope record[J]. Geology, 2014, 42(5):451-454.
DOI URL |
[1] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[2] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[3] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[4] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[5] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[6] | LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales [J]. Earth Science Frontiers, 2024, 31(2): 42-53. |
[7] | WU Yiping, WANG Qing, TAO Shizhen, WANG Jianjun, LI Qian, ZHANG Ningning, WU Xiaozhi, LI Haowu, WANG Xiaobo. Crustal helium: Accumulation controlling factors and resource evaluation methods [J]. Earth Science Frontiers, 2024, 31(1): 340-350. |
[8] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[9] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[10] | SU Dong, HUANG Maolong, HAN Wenlong, LI Aiguo, WANG Enzhi, CHEN Xiangsheng. Suitability evaluation of underground space development in Shenzhen: Urban geoenvironmental considerations [J]. Earth Science Frontiers, 2023, 30(4): 514-524. |
[11] | TANG Xuan, ZHENG Fengzan, LIANG Guodong, MA Zijie, ZHANG Jiazheng, WANG Yufang, ZHANG Tongwei. Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China [J]. Earth Science Frontiers, 2023, 30(3): 110-123. |
[12] | HE Chaofei, LUO Chengyan, CHEN Fulong, LONG Aihua, TANG Hao. CMIP6 multi-model prediction of future climate change in the Hotan River Basin [J]. Earth Science Frontiers, 2023, 30(3): 515-528. |
[13] | ZOU Caineng, MA Feng, PAN Songqi, ZHANG Xinshun, WU Songtao, FU Guoyou, WANG Hongjun, YANG Zhi. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China [J]. Earth Science Frontiers, 2023, 30(1): 128-142. |
[14] | XU Xuhui, LU Jianlin, WANG Baohua, ZHENG Lunju, FANG Chengming, CAI Pengrui, ZHAO Linjie. Marine basins in China: Petroleum resource dynamic evolution and exploration directions [J]. Earth Science Frontiers, 2022, 29(6): 73-83. |
[15] | PENG Guangrong, DU Xiaodong, JIANG Suhua, LI Sanzhong, GUAN Xueting, WEI Dong, JIANG Yan, LU Leilei. Source rock evaluation based on paleotopographic and source-to-sink analysis: An example of the Yangjiang Sag, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2022, 29(5): 188-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||