

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 405-418.DOI: 10.13745/j.esf.sf.2025.10.30
Previous Articles Next Articles
QIAO Xiaojuan1,2(
), LUO Chengke1, CHAI Xinyu1, YU Wenjin1
Received:2025-08-24
Revised:2025-09-26
Online:2026-11-25
Published:2025-11-10
CLC Number:
QIAO Xiaojuan, LUO Chengke, CHAI Xinyu, YU Wenjin. Prediction of fracture distribution in karst area based on machine learning method: Taking Fangshan area in Beijing as a case study[J]. Earth Science Frontiers, 2026, 33(1): 405-418.
| 参数名称 | 测试值 | 最优值 |
|---|---|---|
| 决策树数量(n_estimators) | 100~500 | 400 |
| 决策树的最大深度(max_depth) | 5, 10, 15, 20 | 15 |
| 最大分离特征数(max_features) | 1~5, ‘sqrt’, ‘log’ | ‘sqrt’ |
| 最小分离样本数(min_samples_split) | 2~20 | 5 |
| 最小叶子节点样本数(min_samples_leaf) | 1~10 | 3 |
Table 1 Hyperparameter optimization results of Random Forest Model
| 参数名称 | 测试值 | 最优值 |
|---|---|---|
| 决策树数量(n_estimators) | 100~500 | 400 |
| 决策树的最大深度(max_depth) | 5, 10, 15, 20 | 15 |
| 最大分离特征数(max_features) | 1~5, ‘sqrt’, ‘log’ | ‘sqrt’ |
| 最小分离样本数(min_samples_split) | 2~20 | 5 |
| 最小叶子节点样本数(min_samples_leaf) | 1~10 | 3 |
| 参数名称 | 测试值 | 最优值 |
|---|---|---|
| 决策树的数量 (n_estimators) | 100, 200, 300, 400, 500 | 200 |
| 单棵树的最大深度 (max_depth) | 3, 4, 5, 6, 7, 8, 9 | 5 |
| 学习率(learning_rate) | 0.01, 0.05, 0.1, 0.15, 0.2 | 0.05 |
| 节点所需的最小样本权重和 (min_child_weight) | 1, 3, 5, 7 | 3 |
| 分裂阈值(gamma) | 0, 0.1, 0.2, 0.3, 0.4 | 0 |
| 样本采样率(subsample) | 0.6, 0.7, 0.8, 0.9, 1.0 | 1.0 |
| 特征采样率 (colsample_bytree) | 0.6, 0.7, 0.8, 0.9, 1.0 | 0.7 |
Table 2 Hyperparameter optimization results of Extreme Gradient Boosting Trees Model
| 参数名称 | 测试值 | 最优值 |
|---|---|---|
| 决策树的数量 (n_estimators) | 100, 200, 300, 400, 500 | 200 |
| 单棵树的最大深度 (max_depth) | 3, 4, 5, 6, 7, 8, 9 | 5 |
| 学习率(learning_rate) | 0.01, 0.05, 0.1, 0.15, 0.2 | 0.05 |
| 节点所需的最小样本权重和 (min_child_weight) | 1, 3, 5, 7 | 3 |
| 分裂阈值(gamma) | 0, 0.1, 0.2, 0.3, 0.4 | 0 |
| 样本采样率(subsample) | 0.6, 0.7, 0.8, 0.9, 1.0 | 1.0 |
| 特征采样率 (colsample_bytree) | 0.6, 0.7, 0.8, 0.9, 1.0 | 0.7 |
| 参数名称 | 测试值范围 | 最优值 |
|---|---|---|
| 正则化参数(C) | 0.1, 1, 10, 100 | 10 |
| 不敏感区域宽度(epsilon) | 0.01, 0.1, 0.5 | 0.5 |
| 核函数参数(gamma) | ‘scale’, ‘auto’, 0.1, 1 | ’scale’ |
Table 3 Hyperparameter optimization results of Support Vector Regression Model
| 参数名称 | 测试值范围 | 最优值 |
|---|---|---|
| 正则化参数(C) | 0.1, 1, 10, 100 | 10 |
| 不敏感区域宽度(epsilon) | 0.01, 0.1, 0.5 | 0.5 |
| 核函数参数(gamma) | ‘scale’, ‘auto’, 0.1, 1 | ’scale’ |
| 模型类型 | R2 | MSE | 训练时间/s |
|---|---|---|---|
| 支持向量回归 | 0.605 | 3.417 | 23 |
| 随机森林 | 0.785 | 2.482 | 85 |
| 极致梯度提升树 | 0.536 | 5.684 | 24 |
Table 4 Comparison of model results
| 模型类型 | R2 | MSE | 训练时间/s |
|---|---|---|---|
| 支持向量回归 | 0.605 | 3.417 | 23 |
| 随机森林 | 0.785 | 2.482 | 85 |
| 极致梯度提升树 | 0.536 | 5.684 | 24 |
| [1] | 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994: 5. |
| [2] | 胡鹏, 朱国荣, 江思珉. 裂隙网络模型在地下水数值模拟中的应用研究进展[J]. 工程勘察, 2013, 41(11): 44-49. |
| [3] | 黄宇, 杨荣森, 韩晓东, 等. 基于定向半变异函数的裂隙网络空间变异性分析[J]. 地质科技通报, 2023, 42(2): 186-193. |
| [4] |
HOU W, CHEN Y, LIU H, et al. Reconstructing three-dimensional geological structures by the multiple-point statistics method coupled with a deep neural network: a case study of a metro station in Guangzhou, China[J]. Tunnelling and Underground Space Technology, 2023, 136: 105089.
DOI URL |
| [5] |
MA L, LIU Y, ZHANG X, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166-177.
DOI |
| [6] | 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197. |
| [7] |
王斌, 范冬林. 深度学习在遥感影像分类与识别中的研究进展综述[J]. 测绘通报, 2019(2): 99-102, 136.
DOI |
| [8] | LIU X, YU J, SONG W, et al. Remote sensing image classification algorithm based on texture feature and extreme learning machine[J]. Computers, Materials & Continua, 2020, 65(2): 1385-1395. |
| [9] |
SHEYKHMOUSA M., MAHDIANPARI M., GHANBARI H., et al. Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6308-6325.
DOI URL |
| [10] |
SUN K, CHEN Y S, GENG G S, et al. A review of mineral prospectivity mapping using deep learning[J]. Minerals, 2024, 14: 1021.
DOI URL |
| [11] | 李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(2): 309-319. |
| [12] | 刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用: 以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224. |
| [13] |
ZHAO J, HE L, GONG J, et al. Predicting manganese mineralization using multi-source remote sensing and machine learning: a case study from the malkansu manganese belt, Western Kunlun[J]. Minerals, 2025, 15(2): 113.
DOI URL |
| [14] | CARVALHO M, AZZALINI A, CARDOSO-FERNANDES J, et al. Multi-sensor approach for cobalt exploration in Asturias (Spain) using machine learning Algorithms[C]// IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece. 2024: 2122-2126. |
| [15] | 孙玉洁, 李晓彦, 张超. 基于机器学习的黑云母成分判别花岗岩成因类型方法研究[J]. 现代地质, 2025, 39(3): 523-540. |
| [16] |
简富源, 张子鸣, 董岳霖, 等. 基于多重分形与随机森林的新疆哈巴河金矿成矿预测[J]. 地学前缘, 2025, 32(4): 78-94.
DOI |
| [17] | 刘艳辉, 方然可, 苏永超, 等. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 2021, 29(1): 116-124. |
| [18] | 窦杰, 向子林, 许强, 等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 2023, 48(5): 1657-1674. |
| [19] |
周萍, 邓辉, 张文江, 等. 基于信息量模型和机器学习方法的滑坡易发性评价研究: 以四川理县为例[J]. 地理科学, 2022, 42(9): 1665-1675.
DOI |
| [20] |
BRUZÓN A G, ARROGANTE-FUNES P, ARROGANTE-FUNES F, et al. Landslide susceptibility assessment using an AutoML Framework[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10971.
DOI URL |
| [21] |
BIAN Y, CHEN H, LIU Z, et al. Geological disaster susceptibility evaluation using machine learning: a case study of the Atal Tunnel in Tibetan Plateau[J]. Sustainability, 2024, 16(11): 4604.
DOI URL |
| [22] | 麻晟, 陈剑, 李强, 等. 负样本选择和评价模型对滑坡易发性预测不确定性的影响[J/OL]. 现代地质, 2025: 1-20[2025-10-22]. https://doi.org/10.19657/j.geoscience.1000-8527.2025.013. |
| [23] | 应欣翰, 吴彩燕, 贾应, 等. 机器学习驱动的滑坡易发性多模型分级优化研究: 以四川省理县为例[J/OL]. 现代地质, 2025: 1-21[2025-10-22]. https://link.cnki.net/urlid/11.2035.P.20251010.1453.002. |
| [24] | El-Omairi MA, El Garouani A. A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data[J]. Heliyon, 2023, 9(9): e20168. doi: 10.1016/j.heliyon.2023.e20168. |
| [25] | 王啟, 杨添微, 刘永震, 等. 基于随机森林算法的复杂碳酸盐岩岩性识别[J]. 工程地球物理学报, 2020, 17(5): 550-558. |
| [26] |
肖凡, 杨华清, 唐奥, 等. 基于机器学习与多源数据融合的东天山戈壁沙漠覆盖区中-酸性侵入岩岩性填图[J]. 地学前缘, 2025, 32(4): 199-212.
DOI |
| [27] |
叶舒婉, 侯卫生, 杨玠, 等. 三维地质智能建模研究进展[J]. 地学前缘, 2025, 32(4): 182-198.
DOI |
| [28] |
GHONEIM M S, HAMIMI Z, ABDELRAHMAN K, et al. Machine learning and remote sensing-based lithological mapping of the Duwi Shear-Belt area, Central Eastern Desert, Egypt[J]. Scientific Reports, 2024, 14(1): 17010-17010.
DOI PMID |
| [29] |
RAN X, XUE L, ZHANG Y, et al. Rock classification from field image patches analyzed using a deep convolutional neural network[J]. Mathematics, 2019, 7(8): 755.
DOI URL |
| [30] | 孙虹洁, 赵振华, 黄林显, 等. 多变量LSTM神经网络模型在地下水位预测中的应用[J]. 人民黄河, 2022, 44(8): 69-75. |
| [31] |
胡义明, 陈腾, 罗序义, 等. 基于机器学习模型的淮河流域中长期径流预报研究[J]. 地学前缘, 2022, 29(3): 284-291.
DOI |
| [32] | 齐永强, 李文鹏, 郑跃军, 等. 地下水机器学习方法研究: 水位监测数据驱动的区域补排边界识别[J]. 水文地质工程地质, 2022, 49(1): 1-11. |
| [33] |
IGWEBUIKE N, AJAYI M, OKOLIE C, et al. Application of machine learning and deep learning for predicting groundwater levels in the West Coast Aquifer System, South Africa[J]. Earth Science Informatics, 2024, 18(1): 6.
DOI |
| [34] | 曹文庚, 付宇, 南天, 等. 机器学习在地下水环境背景值与污染风险评价的应用和展望[J]. 地质学报, 2023, 97(7): 2408-2424. |
| [35] | 肖燚, 郭亚会, 李明蔚, 等. 基于机器学习的地下水水质预测研究[J]. 北京师范大学学报(自然科学版), 2022, 58(2): 261-268. |
| [36] |
WU X, LIU W, LIU Y, et al. Hydrogeochemical characteristics and formation mechanisms of high-arsenic groundwater in the North China Plain: insights from hydrogeochemical analysis and unsupervised machine learning[J]. Water, 2024, 16(22): 3215-3215.
DOI URL |
| [37] |
LIANG Y Y, ZHANG X J, SUN Y G, et al. Enhanced groundwater vulnerability assessment to nitrate contamination in Chongqing, Southwest China: integrating novel explainable machine learning algorithms with DRASTIC-LU[J]. Hydrology Research, 2024, 55(6): 663-682.
DOI URL |
| [38] | 关铁生, 鲍振鑫, 贺瑞敏, 等. 无资料地区水文模型参数移植不确定性分析[J]. 水科学进展, 2023, 34(5): 660-672. |
| [39] | 强玲娟, 常安定, 陈玉雪. 机器学习算法反求水文地质参数[J]. 煤田地质与勘探, 2017, 45(3): 87-90, 95. |
| [40] | 丁千, 张舒, 黄锐, 等. 数据驱动动力学与控制研究若干进展[J/OL]. 力学进展, 2025: 1-76. (2025-04-11)[2025-06-19]. https://link.cnki.net/urlid/11.1774.O3.20250411.1049.002. |
| [41] | 易文豪, 王明年, 童建军, 等. 基于支持向量机的大断面岩质隧道掌子面围岩非均一性判识方法[J]. 中国铁道科学, 2021, 42(5): 112-122. |
| [42] | 卢宇杭, 孟治霖, 丁一, 等. 基于深度学习的裂隙智能提取研究[J]. 科技创新与应用, 2025, 15(13): 9-13. |
| [43] |
XIN W, TIAN F, SHAN X, et al. Application of geologically constrained machine learning method in characterizing paleokarst reservoirs of Tarim Basin, China[J]. Water, 2020, 12(6): 1765.
DOI URL |
| [44] |
LHARTI H, SIRIEIX C, MARACHE A, et al. 3D modelling of rock mass heterogeneities in unsaturated karst using geophysics, clustering and geostatistics[J]. Engineering Geology, 2025, 350: 107994-107994.
DOI URL |
| [45] |
刘建明, 张玉修, 曾璐, 等. 北京张坊地区中上元古界中岩溶发育与构造作用[J]. 中国科学院大学学报, 2019, 36(2): 208-217.
DOI |
| [46] |
董莹, 琚宜文, 张玉修, 等. 北京房山张坊岩溶区节理发育特征及其对岩溶作用的影响[J]. 中国科学院大学学报, 2014, 31(6): 783-790.
DOI |
| [47] | 辛宝东. 北京市房山区岩溶地下水水文地球化学特征[J]. 水文地质工程地质, 2005(3): 74-75. |
| [48] | 沈媛媛, 辛宝东, 郭高轩, 等. 北京房山应急水源地地下水数值模拟及河流渗漏量预测[J]. 城市地质, 2011, 6(4): 36-40. |
| [49] | 乔小娟, 侯泉林, 琚宜文, 等. 北京张坊地区岩溶地下水运移富集的构造控制分析[J]. 中国岩溶, 2014, 33(2): 184-191. |
| [50] | 李世君. 北京张坊岩溶地下水库特征及调蓄能力研究[D]. 北京: 中国地质大学(北京), 2012. |
| [51] | 南英华, 郭高轩, 代垠东, 等. 北京张坊应急备用水源地水位动态多时间尺度演变特征及安全供水调控[J]. 地质通报, 2025, 44(8): 1472-1485. |
| [52] | 郭高轩, 代垠东, 许亮, 等. 北京西山岩溶地下水化学特征及成因分析[J]. 环境科学, 2024, 45(2): 802-812. |
| [53] | 王晓红, 刘久荣, 辛宝东, 等. 北京岩溶水系统划分及特征分析[J]. 城市地质, 2016, 11(3): 8-15. |
| [54] |
赵春红, 李强, 梁永平, 等. 北京西山黑龙关泉域岩溶水系统边界与水文地质性质[J]. 地球科学进展, 2014, 29(3): 412-419.
DOI |
| [55] | 杨楠, 李世君, 孙颖, 等. 北京房山岩溶区节理裂隙分布特征研究[J]. 城市地质, 2014, 9(1): 30-32. |
| [56] | 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10. |
| [57] |
CERVANTES J, GARCIA-LAMONT F, RODRÍGUEZ-MAZAHUA L, et al. A comprehensive survey on support vector machine classification: applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215.
DOI URL |
| [58] |
FRIEDMAN H J. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232.
DOI URL |
| [59] |
FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139.
DOI URL |
| [60] | ENATEKIN A, EKNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 721: 1-20. |
| [61] | 周杰英, 贺鹏飞, 邱荣发, 等. 融合随机森林和梯度提升树的入侵检测研究[J]. 软件学报, 2021, 32(10): 3254-3265. |
| [62] |
MOSHE S H J M. Conservation machine learning: a case study of random forests[J]. Scientific Reports, 2021, 11(1): 3629-3629.
DOI PMID |
| [63] | 王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49-55. |
| [64] | 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. |
| [65] | 常绍舜. 从经典系统论到现代系统论[J]. 系统科学学报, 2011, 19(3): 1-4. |
| [66] |
孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11): 1-20.
DOI |
| [67] | LIU H, HIROSHI MOTODA. Feature extraction, construction and selection: a data mining perspective[M]. Berlin: Springer Science & Business Media, 1998. |
| [68] | 杨立洪, 白肇强. 基于二次组合的特征工程与XGBoost模型的用户行为预测[J]. 科学技术与工程, 2018, 18(14): 186-189. |
| [69] |
MENZE B H, KELM B M, MASUCH R, et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data[J]. BMC Bioinformatics, 2009, 10: 213.
DOI PMID |
| [70] | 李成龙. 影像大地测量揭示的走滑型地震损伤带分布式变形与剪切力学性质[D]. 北京: 中国地震局地质研究所, 2024. |
| [1] | KANG Jinzheng, MO Shaoxing, KANG Xueyuan, DANG Jingxuan, CHENG Chijitai, XU Peijie, SHI Xiaoqing. Frontier advances and challenges of machine learning in groundwater science [J]. Earth Science Frontiers, 2026, 33(1): 483-499. |
| [2] | ZHOU Feiran, YIN Ziyue, SUN Xiaomin, SONG Jian, YANG Yun, WU Jianfeng. Integrating numerical simulation and machine learning for identification of groundwater potential zone and its governing factors in the Minqin Basin, Northwest China [J]. Earth Science Frontiers, 2026, 33(1): 511-522. |
| [3] | LOU Yuming, KANG Xu, LAI Yuanping, GONG Jiansheng, ZHOU Difei, DOU Shirong, FAN Bingliang, DING Shuai, SHU Defu, CHEN Gen. Application of implicit modeling and machine learning algorithm to 3D metallogenic prediction of the Julong porphyry copper-molybdenum deposit, Xizang [J]. Earth Science Frontiers, 2025, 32(5): 440-455. |
| [4] | LIU Meiyu, WU Wei, WANG Hui, LUO Weier, WU Juanjuan, GUO Xudong. Training set size takes precedence over similarity: A comparative study of machine learning models for landslide prediction in the Jishishan earthquake [J]. Earth Science Frontiers, 2025, 32(5): 466-483. |
| [5] | KONG Chunfang, TIAN Qian, LIU Jian, CAI Guorong, ZHAO Jie, XU Kai. Metallogenic prediction based on ensemble learning models and Bayesian Optimization Algorithm [J]. Earth Science Frontiers, 2025, 32(4): 122-139. |
| [6] | YE Shuwan, HOU Weisheng, YANG Jie, WANG Haicheng, BAI Yun, WANG Yongzhi. Advance of 3D smart geological modeling [J]. Earth Science Frontiers, 2025, 32(4): 182-198. |
| [7] | XIAO Fan, YANG Huaqing, TANG Ao, HUANG Xuancai, WANG Cuicui. Lithological mapping of intermediate-acid intrusive rocks in the Eastern Tianshan Gobi-desert covered area using machine learning for multisource data fusion [J]. Earth Science Frontiers, 2025, 32(4): 199-212. |
| [8] | XIAO Keyan, LI Cheng, TANG Rui, WANG Yao, SUN Li, LIU Bingli, FAN Mingjing. Big data intelligent prediction and evaluation [J]. Earth Science Frontiers, 2025, 32(4): 20-37. |
| [9] | ZHANG Yufei, ZHANG Yang, JI Junjie, CHENG Qiuming. Prediction of lithospheric heat flow of the South China Sea Oceanic crust based on machine learning methods [J]. Earth Science Frontiers, 2025, 32(4): 235-249. |
| [10] | JIAN Fuyuan, ZHANG Ziming, DONG Yuelin, ZHANG Wenjing, HAO Fengyun, WANG Yiming, WANG Yu, ZHANG Zhenjie. Multifractal analysis and random forest algorithm for mineral prospecting in the Habahe gold deposit, Xinjiang [J]. Earth Science Frontiers, 2025, 32(4): 78-94. |
| [11] | LI Jinming, ZHENG Yang, CHENG Qiuming. Spatial distribution prediction of geothermal gradient in North China Craton driven by the combination of machine learning and stratification modeling [J]. Earth Science Frontiers, 2025, 32(4): 291-302. |
| [12] | XU Donghui, LI Tao, LIN Yanzhu, CHEN Tianfei. Source apportionment of nitrate in groundwater based on correlation monitoring indicators in Liaodong Bay [J]. Earth Science Frontiers, 2025, 32(4): 376-387. |
| [13] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
| [14] | ZHANG Bimin, WANG Xueqiu, ZHOU Jian, WANG Wei, LIU Hanliang, LIU Dongsheng, Sounthone LAOLO, Phomsylalai SOUKSAN, XIE Miao, DONG Chunfang, LIU Qingqing, LU Yuexin, WANG Haonan, HE Bin. Copper mineralization pattern and machine learning-based copper prospectivity prediction in Laos [J]. Earth Science Frontiers, 2025, 32(1): 61-77. |
| [15] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||