Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 440-455.DOI: 10.13745/j.esf.sf.2024.12.82
Previous Articles Next Articles
LOU Yuming1(), KANG Xu1,*(
), LAI Yuanping2, GONG Jiansheng1, ZHOU Difei1, DOU Shirong1, FAN Bingliang1, DING Shuai1, SHU Defu2, CHEN Gen1
Received:
2024-04-01
Revised:
2024-12-14
Online:
2025-09-25
Published:
2025-10-14
Contact:
KANG Xu
CLC Number:
LOU Yuming, KANG Xu, LAI Yuanping, GONG Jiansheng, ZHOU Difei, DOU Shirong, FAN Bingliang, DING Shuai, SHU Defu, CHEN Gen. Application of implicit modeling and machine learning algorithm to 3D metallogenic prediction of the Julong porphyry copper-molybdenum deposit, Xizang[J]. Earth Science Frontiers, 2025, 32(5): 440-455.
Fig.5 3D geological model of Julong copper and molybdenum deposit a—3D metallogenic prediction research area;b—Monzonite granite porphyry;c—Biotite monzonitic granite; d—Granodiorite; e—Quartz diorite porphyrite;f—Cryptoexplosive breccia;g—Yeba Formation tuff;h—Dacite rhyolite porphyry;i—Julong copper orebody Cu≥0.15%.
预测要素 | 要素特征描述 | 要素分类 | |
---|---|---|---|
地质特征 | 地层 | 中-下侏罗统叶巴组凝灰岩 | 重要 |
构造 | 区域深大断裂构造 | 不重要 | |
岩浆岩 | 中侏罗世英安流纹斑岩 | 重要 | |
中侏罗世花岗闪长岩、中新世黑云母二长花岗岩、中新世二长花岗斑岩、 中新世石英闪长玢岩组成的复式杂岩体 | 必要 | ||
矿体 | 已知矿体 | 必要 | |
地球化学特征 | 元素异常 | Cu原生晕异常 | 重要 |
Mo原生晕异常 | 重要 |
Table 1 Prediction factors of Julong copper and molybdenum deposit
预测要素 | 要素特征描述 | 要素分类 | |
---|---|---|---|
地质特征 | 地层 | 中-下侏罗统叶巴组凝灰岩 | 重要 |
构造 | 区域深大断裂构造 | 不重要 | |
岩浆岩 | 中侏罗世英安流纹斑岩 | 重要 | |
中侏罗世花岗闪长岩、中新世黑云母二长花岗岩、中新世二长花岗斑岩、 中新世石英闪长玢岩组成的复式杂岩体 | 必要 | ||
矿体 | 已知矿体 | 必要 | |
地球化学特征 | 元素异常 | Cu原生晕异常 | 重要 |
Mo原生晕异常 | 重要 |
Fig.11 Geochemical metallogenic information of Julong copper and molybdenum deposit a—Cu element space interpolation;b—Mo element space interpolation.
[1] | 李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13. |
[2] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
[3] | HAGEMANN S G, LISITSIN V A, HUSTON D L. Mineral system analysis: quo vadis[J]. Ore Geology Reviews, 2016, 76: 504-522. |
[4] | 耿瑞瑞. 鹿井铀矿床深部和外围三维成矿预测研究[D]. 北京: 核工业北京地质研究院, 2021. |
[5] | COLLON P, PICHAT A, KERGARAVAT C, et al. 3D modeling from outcrop data in a salt tectonic context: example from the Inceyol minibasin, Sivas Basin, Turkey[J]. Interpretation, 2016, 4(3): SM17-SM31. |
[6] | HILLIER M J, SCHETSELAAR E M, DE KEMP E A, et al. Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions[J]. Mathematical Geosciences, 2014, 46(8): 931-953. |
[7] | 周邓, 曾广亮, 王洪荣, 等. 江西桃山罗布里南部地区三维地质建模与成矿预测[J]. 地质通报, 2022, 41(12): 2256-2264. |
[8] | 李青元, 张洛宜, 曹代勇, 等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(4): 759-767. |
[9] | 李楠, 曹瑞, 叶会寿, 等. 内蒙古浩尧尔忽洞金矿三维建模与深部成矿预测[J]. 地学前缘, 2021, 28(3): 170-189. |
[10] | 赵鹏大, 陈建平, 张寿庭. “三联式” 成矿预测新进展[J]. 地学前缘, 2003, 10(2): 455-463. |
[11] | 赵鹏大. “三联式” 资源定量预测与评价: 数字找矿理论与实践探讨[J]. 地球科学:中国地质大学学报, 2002, 27(5): 482-489. |
[12] | 宋建军. 新常态下地质工作创新发展的思考[J]. 中国国土资源经济, 2017, 30(3): 4-8. |
[13] | 吴磊. 新形势下地质矿产勘查及找矿技术的分析[J]. 世界有色金属, 2022(23): 73-75. |
[14] | 毛先成, 王琪, 陈进, 等. 胶西北金矿集区深部成矿构造三维建模与找矿意义[J]. 地球学报, 2020, 41(2): 166-178. |
[15] | 陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. |
[16] | 谷浩, 杨泽强, 高猛, 等. 河南围山城金银矿集区三维地质建模与成矿预测[J]. 地学前缘, 2023, 31(3): 245-259. |
[17] | MAYER-SCHÖNBERGER V, CUKIER K. Big data: a revolution that will transform how we live, work, and think[M]. Boston: Houghton Mifflin Harcourt, 2013. |
[18] | 王娜. 地质大数据功能分析及其分类算法研究[D]. 长春: 吉林大学, 2019. |
[19] | 李章林, 吴冲龙, 张夏林, 等. 地质科学大数据背景下的矿体动态建模方法探讨[J]. 地质科技通报, 2020, 39(4): 59-68. |
[20] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573. |
[21] | ZUO R G. Machine learning of mineralization-related geochemical anomalies: a review of potential methods[J]. Natural Resources Research, 2017, 26(4): 457-464. |
[22] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
[23] | 刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用: 以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224. |
[24] | 肖克炎, 孙莉, 李楠, 等. 大数据思维下的矿产资源评价[J]. 地质通报, 2015, 34(7): 1266-1272. |
[25] | 刘艳鹏, 朱立新, 周永章. 大数据挖掘与智能预测找矿靶区实验研究: 卷积神经网络模型的应用[J]. 大地构造与成矿学, 2020, 44(2): 192-202. |
[26] | 成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25. |
[27] | HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155. |
[28] | 徐志刚, 陈毓川, 王登红, 等. 中国成矿区带划分方案[M]. 北京: 地质出版社, 2008. |
[29] | HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/2/3): 2-24. |
[30] | YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36(1/2/3): 133-159. |
[31] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[32] | 郑有业, 薛迎喜, 程力军, 等. 西藏驱龙超大型斑岩铜(钼)矿床: 发现、特征及意义[J]. 地球科学:中国地质大学学报, 2004, 29(1): 103-108. |
[33] | 佘宏全, 丰成友, 张德全, 等. 西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J]. 岩石学报, 2006, 22(3): 689-696. |
[34] | HU Y B, LIU J Q, LING M X, et al. The formation of Qulong adakites and their relationship with porphyry copper deposit: Geochemical constraints[J]. Lithos, 2015, 220: 60-80. |
[35] | 西藏巨龙铜业有限公司. 西藏自治区墨竹工卡县巨龙矿区铜矿资源储量核实报告[R]. 拉萨: 西藏巨龙铜业有限公司, 2022. |
[36] | 孟祥金, 侯增谦, 李振清. 西藏驱龙斑岩铜矿S、Pb同位素组成: 对含矿斑岩与成矿物质来源的指示[J]. 地质学报, 2006, 80(4): 554-560. |
[37] | HAN Z H, WANG R, TONG X S, et al. Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting[J]. Ore Geology Reviews, 2021, 139: 104455. |
[38] | 字艳梅, 田世洪, 陈欣阳, 等. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义: 以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[39] | 孟祥金, 侯增谦, 高永丰, 等. 碰撞造山型斑岩铜矿蚀变分带模式: 以西藏冈底斯斑岩铜矿带为例[J]. 地学前缘, 2004, 11(1): 201-214. |
[40] | 王登芳, 蒋宗洋, 岳宁飞, 等. 西藏知不拉和浪母家果矽卡岩铜矿地质特征及驱龙-知不拉-浪母家果成矿系统的确定[J]. 地质与勘探, 2015, 51(4): 619-633. |
[41] | 曲焕春. 西藏驱龙斑岩铜钼矿床UST成因: 对大型斑岩矿床成因的暗示[D]. 北京: 中国地质大学(北京), 2016. |
[42] | 孙伟涛. 西藏驱龙斑岩型铜钼矿床成矿元素特征及找矿指示意义[D]. 北京: 中国地质大学(北京), 2019. |
[43] | CHUNG C F, AGTERBERG F P. Regression models for estimating mineral resources from geological map data[J]. Journal of the International Association for Mathematical Geology, 1980, 12(5): 473-488. |
[44] | HOSMER D W, LEMESBOW S. Goodness of fit tests for the multiple logistic regression model[J]. Communications in Statistics-Theory and Methods, 1980, 9(10): 1043-1069. |
[45] | BISHOP C M. Pattern recognition and machine learning[M]. 2 ed. Berlin: Springer Google Scholar, 2006. |
[46] | 娄渝明. 基于地质-地球化学信息的西藏雄村矿集区地表和深部成矿预测研究[D]. 成都: 成都理工大学, 2023. |
[47] | SUYKENS J, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. |
[48] | VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1995. |
[49] | MÜLLER B, REINHARDT J, M T S. Neural networks[J]. Physics of Neural Networks, 1992, 293(4): 2588-2592. |
[50] | HAYKIN S S. Neural networks: a comprehensive foundation[M]. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1998. |
[51] | RUSSELL S J, NORVIG P. Artificial intelligence:a modern approach[M]. London: Pearson, 2016. |
[52] | BREIMAN L. Random forests[J]. Machine Learning, 2024, 45: 5-32. |
[53] | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
[54] | GORDON A D, BREIMAN L, FRIEDMAN J H, et al. Classification and regression trees[J]. Biometrics, 1984, 40(3): 874. |
[55] | CARRANZA E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]. Amsterdam: Elsevier, 2009. |
[56] | ALLISON P D. Logistic regression using the Sas system: theory and application[M]. Cary, NC: SAS Publishing, 2001. |
[57] | XIANG J, XIAO K Y, CARRANZA E J M, et al. 3D mineral prospectivity mapping with random forests: a case study of Tongling, Anhui, China[J]. Natural Resources Research, 2020, 29(1): 395-414. |
[58] | 马瑶, 赵江南. 机器学习方法在矿产资源定量预测应用研究进展[J]. 地质科技通报, 2021, 40(1): 132-141. |
[59] | 花旗, 夏庆霖, 刘奇锋. 基于数据驱动的南岭地区花岗岩岩体含矿性判别[J]. 地质科技通报, 2025, 44(1): 332-345. |
[60] | NYAKILLA E E, SILINGI S N, SHEN C B, et al. Evaluation of source rock potentiality and prediction of total organic carbon using well log data and integrated methods of multivariate analysis, machine learning, and geochemical analysis[J]. Natural Resources Research, 2022, 31(1): 619-641. |
[61] | OBUCHOWSKI N A. Receiver operating characteristic curves and their use in radiology[J]. Radiology, 2003, 229(1): 3-8. |
[62] | NYKÄNEN V, LAHTI I, NIIRANEN T, et al. Receiver operating characteristics (ROC) as validation tool for prospectivity models: a magmatic Ni-Cu case study from the Central Lapland Greenstone Belt, Northern Finland[J]. Ore Geology Reviews, 2015, 71: 853-860. |
[63] | 李程. 深部地质地球化学三维定量矿产预测方法研究: 以西秦岭早子沟金矿为例[D]. 成都: 成都理工大学, 2021. |
[64] | 陈建平, 史蕊, 王丽梅, 等. 基于数字矿床模型的陕西潼关县Q8号金矿脉西段三维成矿预测[J]. 地质学刊, 2012, 36(3): 237-242. |
[1] | KONG Chunfang, TIAN Qian, LIU Jian, CAI Guorong, ZHAO Jie, XU Kai. Metallogenic prediction based on ensemble learning models and Bayesian Optimization Algorithm [J]. Earth Science Frontiers, 2025, 32(4): 122-139. |
[2] | JIA Ran, WANG Haoran, WANG Gongwen, WANG Hao, XU Rongda, FENG Zhankui, SONG Yaowu, WANG Xiaoling, PANG Zong. Three-dimensional geological modeling and deep prospectivity of the Xigou Pb-Zn-Ag-Au deposit, Henan Province [J]. Earth Science Frontiers, 2021, 28(3): 156-169. |
[3] | DONG Shu-Xi, GU Xue-Xiang, YANG Yong-Jiang, DI Yu-Sheng, ZHANG Yong-Mei, XIANG Zhong-Lin, LIU Li, HU Gui-Ceng, LI Zhong-Beng. Application of comprehensive geologicalgeophysicalgeochemical methods on metallogenic prediction of crisis mines—A case study in Yinan gold deposit. [J]. Earth Science Frontiers, 2010, 17(2): 198-208. |
[4] | XIANG Zhong-Lin GU Xue-Xiang DONG Shu-Xi WANG Yan. Application of prognostication from comprehensive information based on GIS to ores prospecting in crisis mines—A case from Yinan gold mine. [J]. Earth Science Frontiers, 2009, 16(4): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||