

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 296-312.DOI: 10.13745/j.esf.sf.2025.10.15
Previous Articles Next Articles
DONG Yanhui1,2(
), WANG Liheng1,2, ZHANG Qian1,2, ZHOU Zhichao3, WEN Dongguang4, LI Shouding1,2, WAN Li5
Received:2025-08-20
Revised:2025-10-11
Online:2026-11-25
Published:2025-11-10
CLC Number:
DONG Yanhui, WANG Liheng, ZHANG Qian, ZHOU Zhichao, WEN Dongguang, LI Shouding, WAN Li. Challenges and progress in fracture flow research of deep hydrogeology[J]. Earth Science Frontiers, 2026, 33(1): 296-312.
Fig.5 Groundwater flow pattern in a typical cross-section of Jiaoye-1 Well, Sichuan Basin, and the spatiotemporal evolution of fracturing fluid migration during hydraulic fracturing. Modified after [72,76,80].
Fig.6 Development model of deep to ultra- deep carbonate reservoirs and hydrothermal dolomitization simulation in the Tarim Basin. a adapted from [85]; b modified after [86].
| [1] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
DOI |
| [2] | 张茹, 谢和平, 张泽天, 等. 深地科学与地质时变原位探测的发展与展望[J]. 中国科学:物理学力学天文学, 2025, 55(11): 111015. |
| [3] | 谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959-3978. |
| [4] | BEAR J. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier Publishing Co. 1972: 764. |
| [5] | 王大纯, 张宗祜. 水文地质学的研究现状和今后发展方向[J]. 科学通报, 1965, (6): 511-520. |
| [6] | 王大纯. 我国水文地质学的展望[J]. 地球科学, 1985, (1): 1-7. |
| [7] | 王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995. |
| [8] |
GLEESON T, BEFUS K M, JASECHKO S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2): 161-167.
DOI |
| [9] | FERGUSON G, MCINTOSH J C, WARR O, et al. Crustal groundwater volumes greater than previously thought[J]. Geophysical Research Letters, 2021, 48(16): e2021GL093549. |
| [10] |
LOLLAR B S, WARR O, HIGGINS P M. The Hidden Hydrogeosphere: the contribution of deep groundwater to the planetary water cycle[J]. Annual Review of Earth and Planetary Sciences, 2024, 52(1): 443-466.
DOI URL |
| [11] |
TSANG C-F, NIEMI A. Deep hydrogeology: a discussion of issues and research needs[J]. Hydrogeology Journal, 2013, 21(8): 1687-1690.
DOI URL |
| [12] |
WARR O, BALLENTINE C J, ONSTOTT T C, et al. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system[J]. Nature Communications, 2022, 13(1): 3768.
DOI PMID |
| [13] |
WARR O, SMITH N J T, SHERWOOD LOLLAR B. Hydrogeochronology: resetting the timestamp for subsurface groundwaters[J]. Geochimica et Cosmochimica Acta, 2023, 348: 221-238.
DOI URL |
| [14] |
WARR O, SHERWOOD LOLLAR B, FELLOWES J, et al. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases[J]. Geochimica et Cosmochimica Acta, 2018, 222: 340-362.
DOI URL |
| [15] |
王成善, 高远, 王璞珺, 等. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430.
DOI |
| [16] | MCINTOSH J C, FERGUSON G. Deep meteoric water circulation in Earth’s crust[J]. Geophysical Research Letters, 2021, 48(5): e2020GL090461. |
| [17] |
SPRENGER M, STUMPP C, WEILER M, et al. The demographics of water: a review of water ages in the critical zone[J]. Reviews of Geophysics, 2019, 57(3): 800-834.
DOI URL |
| [18] | FERGUSON G, MCINTOSH J C, JASECHKO S, et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge[J]. Communications Earth & Environment, 2023, 4(1): 48. |
| [19] |
MARTÍNEZ D E, JIANG W, MATSUMOTO T, et al. 81Kr reveals one-million-year-old groundwater at the Atlantic coast of Argentina as a record of Mid-Pleistocene climate[J]. Journal of Hydrology, 2022, 610: 127846.
DOI URL |
| [20] |
COLLON P, KUTSCHERA W, LOOSLI H H, et al. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater[J]. Earth and Planetary Science Letters, 2000, 182(1): 103-113.
DOI URL |
| [21] |
BAR-ON Y M, PHILLIPS R, MILO R. The biomass distribution on Earth[J]. Proceedings of the National Academy of Sciences, 2018, 115(25): 6506-6511.
DOI URL |
| [22] |
COLWELL F S, D’HONDT S. Nature and Extent of the Deep Biosphere[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 547-574.
DOI URL |
| [23] |
MAGNABOSCO C, LIN L H, DONG H, et al. The biomass and biodiversity of the continental subsurface[J]. Nature Geoscience, 2018, 11(10): 707-717.
DOI |
| [24] |
TRIMARCO E, BALKWILL D, DAVIDSON M, et al. In Situ enrichment of a diverse community of bacteria from a 4-5 km deep fault zone in South Africa[J]. Geomicrobiology Journal, 2006, 23(6): 463-473.
DOI URL |
| [25] | 陈畅, 胡成, 陈刚, 等. 低渗透性裂隙介质中地下水定深分层取样的技术方法研究[J]. 安全与环境工程, 2017, 24(6): 76-80. |
| [26] | 周志超. 高放废物处置库北山预选区深部地下水成因机制研究[D]. 北京: 核工业北京地质研究院, 2014. |
| [27] |
JASECHKO S. Global isotope hydrogeology: a review[J]. reviews of geophysics, 2019, 57(3): 835-965.
DOI URL |
| [28] | 王礼恒, 董艳辉, 周鹏鹏, 等. 阿拉善塔木素地段地下水补给来源与演化特征分析[J]. 工程地质学报, 2019, 27(3): 691-698. |
| [29] | 王礼恒, 董艳辉, 宋凡, 等. 甘肃石油河流域地下水补给来源与演化特征分析[J]. 干旱区地理, 2017, 40(1): 54-61. |
| [30] | ZHANG Q, DENG H, DONG Y, et al. Investigation of coupled processes in fractures and the bordering matrix via a micro-continuum reactive transport model[J]. Water Resources Research, 2022, 58(2): e2021WR030578. |
| [31] | ZHANG Q, DONG Y, MOLINS S, et al. The impacts of micro-porosity and mineralogical texture on fractured rock alteration[J]. Water Resources Research, 2024, 60(6): e2023WR036266. |
| [32] |
ISHIBASHI T, FANG Y, ELSWORTH D, et al. Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104271.
DOI URL |
| [33] |
TORKAN M, UOTINEN L, BAGHBANAN A, et al. Experimental and numerical characterization of hydro-mechanical properties of rock fractures: the effect of the sample size on roughness and hydraulic aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2025, 186: 106009.
DOI URL |
| [34] |
ZHANG X, MA F, DAI Z, et al. Radionuclide transport in multi-scale fractured rocks: a review[J]. Journal of Hazardous materials, 2022, 424: 127550.
DOI URL |
| [35] |
BERKOWITZ B. Characterizing flow and transport in fractured geological media: a review[J]. Advances in Water Resources, 2002, 25(8): 861-884.
DOI URL |
| [36] | 张倩, 董艳辉, 童少青, 等. 核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用[J]. 科学通报, 2016(21): 2387-2394. |
| [37] |
SANCHEZ-ROA C, SALDI G D, MITCHELL T M, et al. The role of fluid chemistry on permeability evolution in granite: applications to natural and anthropogenic systems[J]. Earth and Planetary Science Letters, 2021, 553: 116641.
DOI URL |
| [38] |
YANG Y, XU W, LI X, et al. Human-machine interactive refined identification of complex rock discontinuities using photogrammetric techniques: case studies from a candidate HLW repository site in China[J]. Environmental Earth Sciences, 2025, 84(10): 277.
DOI |
| [39] |
SONG Z, ZHOU Q Y. Micro-scale granite permeability estimation based on digital image analysis[J]. Journal of Petroleum Science and Engineering, 2019, 180: 176-185.
DOI URL |
| [40] |
DONG Y, FU Y, WANG L. Enhanced characterization of fractured zones in bedrock using hydraulic tomography through joint inversion of hydraulic head and flux data[J]. Hydrology, 2024, 11(8): 122.
DOI URL |
| [41] |
RINGEL L M, ILLMAN W A, BAYER P. Recent developments, challenges, and future research directions in tomographic characterization of fractured aquifers[J]. Journal of Hydrology, 2024, 631: 130709.
DOI URL |
| [42] |
DONG Y, FU Y, YEH T C J, et al. Equivalence of discrete fracture network and porous media models by hydraulic tomography[J]. Water Resources Research, 2019, 55(4): 3234-3247.
DOI URL |
| [43] |
SAEIBEHROUZI A, ABOLFATHI S, DENISSENKO P, et al. Pore-scale modeling of solute transport in partially-saturated porous media[J]. Earth-Science Reviews, 2024, 256: 104870.
DOI URL |
| [44] | 魏亚强, 董艳辉, 周鹏鹏, 等. 基于离散裂隙网络模型的核素粒子迁移数值模拟研究[J]. 水文地质工程地质, 2017, 44(1): 123-130. |
| [45] |
HADGU T, KARRA S, KALININA E, et al. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock[J]. Journal of Hydrology, 2017, 553: 59-70.
DOI URL |
| [46] |
SHARMA K M, TSANG C F, GEIER J, et al. Characteristics of flow and transport in low-permeability fractured rock based on a channel network model[J]. Advances in Water Resources, 2025, 202: 105016.
DOI URL |
| [47] |
RUTQVIST J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers & Geosciences, 2011, 37(6): 739-750.
DOI URL |
| [48] |
MA L, GAO D, QIAN J, et al. Multiscale fractures integrated equivalent porous media method for simulating flow and solute transport in fracture-matrix system[J]. Journal of Hydrology, 2023, 617: 128845.
DOI URL |
| [49] |
BERNIER F, LEMY F, DE CANNIÈRE P, et al. Implications of safety requirements for the treatment of THMC processes in geological disposal systems for radioactive waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 428-434.
DOI URL |
| [50] |
JIN J, SUN W, LU S-F, et al. Influence of biofilm growth on permeability evolution in gravel layers of leachate collection system: a pore-scale analysis using Darcy-Brinkman-Stokes approach[J]. Journal of Hydrology, 2025, 646: 132320.
DOI URL |
| [51] |
XIA F, LIU J, NIE H, et al. Random Walks: A Review of Algorithms and Applications[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(2): 95-107.
DOI URL |
| [52] |
NOLE M, BARTRAND J, NAIM F, et al. Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0[J]. Geoscientific Model Development, 2025, 18(5): 1413-1425.
DOI URL |
| [53] | ROQUE-MALO S, DRUHAN J L, KUMAR P. REWTCrunch: a modeling framework for vegetation induced reactive zone processes in the critical zone[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(2): e2021JG006562. |
| [54] |
ZHANG D, WU H, JIANG F, et al. Development of coupled fluid-flow/geomechanics model considering storage and transport mechanism in shale gas reservoirs with complex fracture morphology[J]. Scientific Reports, 2024, 14(1): 19238.
DOI PMID |
| [55] |
SENDRÓS A, CABRERA M D C, CASAS-PONSATÍ A. Application of geophysical methods for hydrogeology[J]. Water, 2025, 17(1): 98.
DOI URL |
| [56] |
LIU S, LU D, PAINTER S L, et al. Uncertainty quantification of machine learning models to improve streamflow prediction under changing climate and environmental conditions[J]. Frontiers in Water, 2023, 5: 1150126.
DOI URL |
| [57] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
DOI URL |
| [58] |
周志超, 王驹, 陈亮, 等. 高放废物地质处置的安全管理与策略[J]. 科技导报, 2020, 38(16): 105-114.
DOI |
| [59] |
BIRKHOLZER J, HOUSEWORTH J, TSANG C F. Geologic disposal of high-level radioactive waste: status, key issues, and trends[J]. Annual Review of Environment and Resources, 2012, 37: 79-106.
DOI URL |
| [60] | 董艳辉, 符韵梅, 王礼恒, 等. 甘肃北山—河西走廊—祁连山区域地下水循环模式[J]. 地质科技通报, 2022, 41(1): 79-89. |
| [61] |
REIJONEN H M, ELMINEN T, HEIKKILÄ P, et al. Enhanced identification of fracture smectites and other alteration minerals via short-wave infrared reflectance at two finnish crystalline sites, olkiluoto and hyrkkölä[J]. Rock Mechanics and Rock Engineering, 2024, 57(6): 4299-4332.
DOI |
| [62] |
RUTQVIST J, TSANG C F. Modeling nuclear waste disposal in crystalline rocks at the Forsmark and Olkiluoto repository sites - evaluation of potential thermal-mechanical damage to repository excavations[J]. Tunnelling and Underground Space Technology, 2024, 152: 105924.
DOI URL |
| [63] | 王驹, 陈亮, 苏锐, 等. 中国高放废物地质处置北山地下实验室重大进展[J]. 世界核地质科学, 2023, 40(增刊1): 473-490. |
| [64] | 王驹, 陈亮, 周志超, 等. 我国高放废物地质处置新突破[J]. 原子能科学技术, 2024, 58(增刊2): 217-230. |
| [65] |
FU Y, DONG Y, WANG L, et al. Characteristics of hydraulic conductivity in mountain block systems and its effects on mountain block recharge: insights from field investigation and numerical modeling[J]. Journal of Hydrology, 2022, 612: 128184.
DOI URL |
| [66] |
WANG L, LI G, DONG Y, et al. Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper-middle reaches of the Shule River basin, northwestern China[J]. Environmental Earth Sciences, 2015, 73(4): 1901-1915.
DOI URL |
| [67] | 李国敏, 董艳辉, 王礼恒, 等. 甘肃北山区域-盆地-岩体多尺度地下水数值模拟研究[M]. 北京: 科学出版社, 2016. |
| [68] |
WANG L, DONG Y, XU Z. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China[J]. Journal of Asian Earth Sciences, 2017, 146(3): 20-29.
DOI URL |
| [69] |
CAO X, HU L, WANG J, et al. Regional groundwater flow assessment in a prospective high-level radioactive waste repository of China[J]. Water, 2017, 9(7): 551.
DOI URL |
| [70] | 董艳辉, 宋凡, 周鹏鹏, 等. 巴彦诺日公地段花岗岩微裂隙发育特征研究[J]. 工程地质学报, 2018(3): 572-582. |
| [71] |
SONG F, DONG Y H, XU Z F, et al. Granite microcracks: structure and connectivity at different depths[J]. Journal of Asian Earth Sciences, 2016, 124: 156-168.
DOI URL |
| [72] | 王礼恒, 董艳辉, 杨春, 等. 页岩气水力压裂开发的环境效应研究进展[J]. 工程地质学报, 2024, 32(4): 1447-1458. |
| [73] | 张东晓, 杨婷云, 吴天昊, 等. 页岩气开发机理和关键问题[J]. 科学通报, 2016(1): 62-71. |
| [74] |
VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
DOI URL |
| [75] |
VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009.
DOI URL |
| [76] | 王礼恒, 董艳辉, 张倩, 等. 压裂液向上迁移对浅层地下水环境的影响分析[J]. 安全与环境工程, 2021, 28(3): 198-205. |
| [77] |
FLEWELLING S A, SHARMA M. Constraints on upward migration of hydraulic fracturing fluid and brine[J]. Groundwater, 2014, 52(1): 9-19.
DOI PMID |
| [78] |
RUTQVIST J, RINALDI A P, CAPPA F, et al. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 107: 31-44.
DOI URL |
| [79] | 冯雪磊, 马凤山, 赵海军, 等. 断层影响下的页岩气储层水力压裂模拟研究[J]. 工程地质学报, 2021, 29(3): 751-763. |
| [80] |
WANG L, DONG Y, ZHANG Q, et al. Numerical simulation of pressure evolution and migration of hydraulic fracturing fluids in the shale gas reservoirs of Sichuan Basin, China[J]. Journal of Hydrology, 2020, 588: 125082.
DOI URL |
| [81] | 利振彬, 黄天明, 庞忠和, 等. 页岩气开发的地下水环境背景值、监测指标及污染示踪方法研究: 以焦石坝区块为例[J]. 工程地质学报, 2019, 27(1): 170-177. |
| [82] |
HUANG T, PANG Z, LI Z, et al. A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China[J]. Journal of Hydrology, 2020, 581: 124403.
DOI URL |
| [83] |
SELVADURAI A P S, ZHANG D, KANG Y. Permeability evolution in natural fractures and their potential influence on loss of productivity in ultra-deep gas reservoirs of the Tarim Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 162-177.
DOI URL |
| [84] | 李忠. 盆地深层流体-岩石作用与油气形成研究前沿[J]. 矿物岩石地球化学通报, 2016(5): 807-816. |
| [85] |
马永生, 蔡勋育, 黎茂稳, 等. 深层-超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展[J]. 石油勘探与开发, 2024, 51(4): 692-707.
DOI |
| [86] |
DONG Y, DUAN R, LI Z, et al. Quantitative evaluation of hydrothermal fluids and their impact on diagenesis of deep carbonate reservoirs: insights from geochemical modeling[J]. Marine and Petroleum Geology, 2021, 124: 104797.
DOI URL |
| [87] |
OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144.
DOI URL |
| [88] |
蒋政, 舒彪, 谭静强. 二氧化碳基增强型地热系统储层换热研究现状及展望[J]. 地学前缘, 2024, 31(6): 235-251.
DOI |
| [89] |
孙焕泉, 高楠安, 吴陈冰洁, 等. 中深层地热资源勘探开发技术与典型应用[J]. 地学前缘, 2025, 32(2): 230-241.
DOI |
| [90] | 文冬光, 张二勇, 王贵玲, 等. 干热岩勘查开发进展及展望[J]. 水文地质工程地质, 2023, 50(4): 1-13. |
| [91] |
RIAHI A, PETTITT W, DAMJANAC B, Et al. Numerical modeling of discrete fractures in a field-scale FORGE EGS reservoir[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5245-5258.
DOI |
| [92] |
MAHMOODPOUR S, SINGH M, TURAN A, et al. Hydro-thermal modeling for geothermal energy extraction from Soultz-sous-Forêts, France[J]. Geosciences, 2021, 11(11): 464.
DOI URL |
| [93] |
ABE A, HORNE R N. Investigating fracture network creation and stimulation mechanism of EGS reservoirs[J]. Geothermics, 2023, 107: 102606.
DOI URL |
| [94] | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统:国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. |
| [95] | 谢文苹, 路睿, 张盛生, 等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术, 2020, 48(3): 77-84. |
| [96] | 许天福, 文冬光, 袁益龙. 干热岩地热能开发技术挑战与发展战略[J]. 地球科学, 2024, 49(6): 2131-2147. |
| [1] | WEN Zhang, LI Yiming, GUO Xulei, WAN Tan, LUO Qingshu, ZHOU Hong. Characteristics of surface water-groundwater interaction in the fractured riverbank of the Gezhouba Reservoir area [J]. Earth Science Frontiers, 2026, 33(1): 1-13. |
| [2] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
| [3] | XIONG Guiyao, WU Jichun, YANG Yun, ZHU Xiaobin, LIU Mengwen, SONG Yalin. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems [J]. Earth Science Frontiers, 2022, 29(3): 189-199. |
| [4] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
| [5] | XIAO Fan, WANG Kaiqi. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling [J]. Earth Science Frontiers, 2021, 28(3): 190-207. |
| [6] | ZHANG Huatian, LI Jianghai, TAO Chunhui. Discussions on the bathymetric segmentation and tectonogenesis of the oblique spreading Southwest Indian Ridge [J]. Earth Science Frontiers, 2021, 28(2): 271-283. |
| [7] | HU Zhiping,PENG Jianbing,ZHANG Fei,WANG Rui,CHEN Nannan. The critical issues and creative concepts in the development of urban underground space [J]. Earth Science Frontiers, 2019, 26(3): 76-84. |
| [8] | SHU Jiang-Jian, CHEN An-Gao, GONG Gui-Lun, YI Jin, CA Jian-Xin, GONG Chao-Yang, HUANG Dong-Lin, CENG Jiao-Song, LIN Ge. Structurefluid related mineralization during the mylonitization process in the Hetai goldfield, Guangdong Province. [J]. Earth Science Frontiers, 2011, 18(5): 67-77. |
| [9] | XUE Chun-Ji, CHE Guo-Xiang, XUE Wei, CAO Ji-Hu. Relationship between hydrocarbon generation and basinal fluid flow and uranium mineralization in the Ordos Basin. [J]. Earth Science Frontiers, 2011, 18(5): 19-28. |
| [10] | CHE Guo-Xiang, XUE Chun-Ji. Principles, methods and applications of hydrodynamic studies of mineralization. [J]. Earth Science Frontiers, 2011, 18(5): 1-18. |
| [11] | Hongjun Luo, Dag Nummedal, Shaofeng Liu. 3D flexural numerical modeling of foreland basins: An example from the Upper Cretaceous across the Southwestern Wyoming. [J]. Earth Science Frontiers, 2010, 17(4): 128-139. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||