

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 350-366.DOI: 10.13745/j.esf.sf.2025.8.67
Previous Articles Next Articles
RUAN Zhuang1(
), WANG Yueyun2, CHANG Qiuhong1, YU Bingsong1,*(
)
Received:2025-05-20
Revised:2025-06-13
Online:2025-11-25
Published:2025-11-12
Contact:
YU Bingsong
CLC Number:
RUAN Zhuang, WANG Yueyun, CHANG Qiuhong, YU Bingsong. Spatio-temporal fractal structures in sedimentary sequences and their geological significance[J]. Earth Science Frontiers, 2025, 32(6): 350-366.
| [1] | SCHLAGER W. Fractal nature of stratigraphic sequences[J]. Geology, 2004, 32(3): 185-188. |
| [2] | MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1982. |
| [3] | TURCOTTE D L. Fractals, chaos, self-organized criticality and tectonics[J]. Terra Nova, 1992, 4(1): 4-12. |
| [4] | SYLVESTER Z. Turbidite bed thickness distributions: methods and pitfalls of analysis and modelling[J]. Sedimentology, 2007, 54(4): 847-870. |
| [5] | MANDELBROT B B. Multifractal measures, especially for the geophysicist[J]. Pure and Applied Geophysics, 1989, 131(1): 5-42. |
| [6] | MANDELBROT B B. Multifractals and 1/f noise: wild self-affinity in physics (1963-1976)[M]. New York: Springer, 2013. |
| [7] | 於崇文. 地质作用的自组织临界过程动力学: 地质系统在混沌边缘分形生长[J]. 地学前缘, 2000 (1): 13-42. |
| [8] | KROHN C E. Fractal measurements of sandstones, shales, and carbonates[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B4): 3297-3305. |
| [9] | TYLER S W, WHEATCRAFT S W. Fractal processes in soil water retention[J]. Water Resources Research, 1990, 26(5): 1047-1054. |
| [10] | 贺承祖, 华明琪. 储层孔隙结构的分形几何描述[J]. 石油与天然气地质, 1998, 19(1): 15-23. |
| [11] | YANG F, NING Z, LIU H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384. |
| [12] | LIU X, XIONG J, LIANG L. Investigation of pore structure and fractal characteristics of organic-rich Yanchang Formation shale in central China by nitrogen adsorption/desorption analysis[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 62-72. |
| [13] | FU C, LI S L, LI S L, et al. Genetic types of mudstone in a closed-lacustrine to open-marine transition and their organic matter accumulation patterns: a case study of the paleocene source rocks in the East China Sea Basin[J]. Journal of Petroleum Scienced and Engineering, 2022, 208: 19. |
| [14] | 李澎, 陈浩然, 王阳, 等. 华北盆地开平向斜山西组海陆过渡相页岩孔隙分形特征[J/OL]. 天然气地球科学, 1-20[2025-05-15]. DOI: 10.11764/j.issn.1672-1926.2025.01.009. |
| [15] | BISCHOFF J L, FITZPATRICK J A, LEON L, et al. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain[J]. Journal of Human Evolution, 1997, 33(2/3): 129-154. |
| [16] | BOSTANMANESHRAD F, PARTANI S, NOORI R, et al. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin[J]. Science of the Total Environment, 2018, 639: 1588-1600. |
| [17] | CANFIELD D E, NGOMBI-PEMBA L, HAMMARLUND E U, et al. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16736-16741. |
| [18] | FROST S R. Fossil Cercopithecidae from the Middle Pleistocene Dawaitoli Formation, Middle Awash Valley, Afar region, Ethiopia[J]. American Journal of Physical Anthropology, 2007, 134(4): 460-471. |
| [19] | GUGERLI F, ALVAREZ N, INNER W. A deep dig-hindsight on Holocene vegetation composition from ancient environmental DNA[J]. Molecular Ecology, 2013, 22(13): 3433-3436. |
| [20] | PETERS S E, FOOTE M. Determinants of extinction in the fossil record[J]. Nature, 2002, 416(6879): 420-424. |
| [21] | POTTER-MCINTYRE S L, WILLIAMS J, PHILLIPS-LANDER C, et al. Taphonomy of microbial biosignatures in Spring Deposits: a comparison of Modern, Quaternary, and Jurassic examples[J]. Astrobiology, 2017, 17(3): 216-230. |
| [22] | SCHWING P T, CHANTON J P, ROMERO I C, et al. Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event[J]. Environmental Pollution, 2018, 237: 424-429. |
| [23] | VON GUNTEN L, D’ANDREA W J, BRADLEY R S, et al. Proxy-to-proxy calibration: increasing the temporal resolution of quantitative climate reconstructions[J]. Scientific Reports, 2012, 2: 609-609. |
| [24] | ELIAZAR I I, SHLESINGER M F. Fractional motions[J]. Physics Reports: Review Section of Physics Letters, 2013, 527(2): 101-129. |
| [25] | WATKINS N W. Mandelbrot’s stochastic time series models[J]. Earth and Space Science, 2019, 6(11): 2044-2056. |
| [26] | ZHAO P, WANG X, CAI J, et al. Multifractal analysis of pore structure of Middle Bakken Formation using low temperature N-2 adsorption and NMR measurements[J]. Journal of Petroleum Science and Engineering, 2019, 176: 312-320. |
| [27] | ZHANG X, HAN H, PENG J, et al. Multifractal analysis of pore structure and evaluation of deep-buried Cambrian dolomite reservoir with image processing: a case from Tarim Basin, NW China[J]. Geofluids, 2020, 7131573. DOI: 10.1155/2020/7131573. |
| [28] | CHEN C S, HISCOTT R N. Statistical analysis of facies clustering in submarine-fan turbidite successions[J]. Journal of Sedimentary Research, 1999, 69(2): 505-517. |
| [29] | WOOD R, LIU A G, BOWYER F, et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution, 2019, 3(4): 528-538. |
| [30] | BOWYER F T, ZHURAVLEV A Y, WOOD R, et al. Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals[J]. Earth-Science Reviews, 2022, 225: 103913. |
| [31] | IMASHEV S, MISHCHENKO M, CHESHEV M. Fractal analysis of seismoacoustic signals of near-surface sedimentary rocks in Kamchatka[J]. Geofizika, 2019, 36(2): 153-169. |
| [32] | GACI S, ZAOURAR N. Heterogeneities characterization from velocity logs using multifractional Brownian motion[J]. Arabian Journal of Geosciences, 2011, 4(3/4): 535-541. |
| [33] | BALA M, JARZYNA J, MORTIMER Z. Statistical analysis of petrophysical parameters of Middle Miocene rocks from the Polish Carpathian Foredeep[J]. Geological Quarterly, 2012, 56(4): 665-679. |
| [34] | HURST H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799. |
| [35] | LEARY P C, AL-KINDY F. Power-law scaling of spatially correlated porosity and log(permeability) sequences from north-central North Sea Brae oilfield well core[J]. Geophysical Journal International, 2002, 148(3): 426-442. |
| [36] | BAILEY R J. Strata and time: probing the gaps in our understanding[J]. Geological Society, London, Special Publication, 2016, 51(6): 966-978. |
| [37] | KOETELESOVA S. Facies clustering in deep-water successions of the Magura zone of the Outer Western Carpathians: implications for interpretation of submarine-fan environments[J]. Facies, 2012, 58(2): 217-227. |
| [38] | MUKHOPADHYAY B, CHAKRABORTY P P, PAUL S. Facies clustering in turbidite successions: case study from Andaman Flysch Group, Andaman Islands, India[J]. Gondwana Research, 2003, 6(4): 918-925. |
| [39] | PANTOPOULOS G, VAKALAS I, MARAVELIS A, et al. Statistical analysis of turbidite bed thickness patterns from the Alpine fold and thrust belt of western and southeastern Greece[J]. Sedimentary Geology., 2013, 294: 37-57. |
| [40] | FELLETTI F, BERSEZIO R. Validation of Hurst statistics: a predictive tool to discriminate turbiditic sub-environments in a confined basin[J]. Petroleum Geoscience, 2010, 16(4): 401-412. |
| [41] | HOU P, JOBE Z R, WOOD L J. Statistical characterization of a confined submarine fan system: the Pennsylvanian Lower Atoka Formation, Ouachita Mountains, USA[J]. Sedimentology, 2022, 69(2): 775-797. |
| [42] | LONGHITANO S G, NEMEC W. Statistical analysis of bed-thickness variation in a Tortonian succession of biocalcarenitic tidal dunes, Amantea Basin, Calabria, southern Italy[J]. Sedimentary Geology, 2005, 179(3/4): 195-224. |
| [43] | KUAI K Z, SAI C W. Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method[J]. Journal of Hydrology, 2012, 420: 245-254. |
| [44] | PLOTNICK R E, RESTEGAARD K L. Fractals in petroleum geology and Earth processes[M]. New York: Springer, 1995: 73-96. |
| [45] | MARIANI M C, KUBIN W, ASANTE P K, et al. Relationship between continuum of Hurst exponents of noise-like time series and the Cantor set[J]. Entropy, 2021, 23(11). DOI: 10.3390/e23111505. |
| [46] | DIEM DANG H, AGARWAL R P. Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Lévy noise[J]. Stochastics and Dynamics, 2021, 21(2): 2150013. |
| [47] | JOELSON M, GOLDER J, BELTRAME P, et al. On fractal nature of groundwater level fluctuations due to rainfall process[J]. Chaos Solitons & Fractals, 2016, 82: 103-115. |
| [48] | WITT A, MALAMUD B D. Quantification of long-range persistence in geophysical time series: conventional and benchmark-based improvement techniques[J]. Surveys in Geophysics, 2013, 34(5): 541-651. |
| [49] | BECKER M, KARPYTCHEV M, LENNARTZ-SASSINEK S. Long-term sea level trends: Natural or anthropogenic?[J]. Geophysical Research Letters, 2014, 41(15): 5571-5580. |
| [50] | CAEL B B, HEATHCOTE A J, SEEKELL D A. The volume and mean depth of Earth’s lakes[J]. Geophysical Research Letters, 2017, 44(1): 209-218. |
| [51] | CAMPBELL B A, GHENT R R, SHEPARD M K. Limits on inference of Mars small-scale topography from MOLA data[J]. Geophysical Research Letters, 2003, 30(3): 1115. |
| [52] | CERSOSIMO D O, WANLISS J A. Initial studies of high latitude magnetic field data during different magnetospheric conditions[J]. Earth Planets and Space, 2007, 59(1): 39-43. |
| [53] | LEE K C. Characterization of turbulence stability through the identification of multifractional Brownian motions[J]. Nonlinear Process in Geophysics., 2013, 20(1): 97-106. |
| [54] | JORDAN T M, COOPER M A, SCHROEDER D M, et al. Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland[J]. Cryosphere, 2017, 11(3): 1247-1264. |
| [55] | LENNARTZ S, UNDE A. Trend evaluation in records with long-term memory: application to global warming[J]. Geophysical Research Letters, 2009, 36: L16706. |
| [56] | MA J, SUN Y, CHU C. Chaotic characters of the Yellow River Basin based on the sediment time series: an attempt to integrated research in geography[J]. Journal of Geographical Sciences, 2010, 20(2): 219-230. |
| [57] | MASSAH M, KANTZ H. Confidence intervals for time averages in the presence of long-range correlations: a case study on Earth surface temperature anomalies[J]. Geophysical Research Letters, 2016, 43(17): 9243-9249. |
| [58] | ZHOU J, LU T. Relative contributions of climate change and human activities on vegetation productivity variation in national nature reserves on the Qinghai-Tibetan Plateau[J]. Remote Sensing, 2022, 14(18): 4626 |
| [59] | LI H, XU Q, HE Y, et al. Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent[J]. Geomatics Natural Hazards & Risk, 2021, 12(1): 3089-3113. |
| [60] | YANG D, ZHANG C, LIU Y. Multifractal characteristic analysis of near-fault earthquake ground motions[J]. Soil Dynamics and Earthquake Engineering, 2015, 72: 12-23. |
| [61] | PLOTNICK R E, PRESTEGAARD K L. Fractal and multifractal models and methods in stratigraphy[M]. New York: Springer, 1995. |
| [62] | MARSAN D, BEAN C J. Multiscaling nature of sonic velocities and lithology in the upper crystalline crust: evidence from the KTB Main Borehole[J]. Geophysical Research Letters, 1999, 26(2): 275-278. |
| [63] | HERNANDEZ-MARTINEZ E, PEREZ-MUNOZ T, VELASCO-HERNANDEZ J X, et al. Facies Recognition using multifractal Hurst analysis: applications to well-log data[J]. Mathematical Geosciences, 2013, 45(4): 471-486. |
| [64] | MANDELBROT B B, WALLIS J R. Some long-run properties of geophysical records[J]. Water Resources Research, 1969, 5(2): 321-340. |
| [65] | CATUNEANU O, KHALIFA M A, WANAS H A. Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt[J]. Sedimentary Geology, 2006, 190(1/2/3/4): 121-137. |
| [66] | FELLETTI F. International workshop on confined turbidite systems[M]. London: Geological Society Publishing House, 2004: 285-305. |
| [67] | WILMSEN M, FRANZ T, FURSICH S K, et al. Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran[J]. Facies, 2010, 56(1): 59. |
| [68] | HOU P F, WOOD L J, JOBE Z R. Tectonic-sedimentary interplay of a confined deepwater system in a foreland basin setting: the Pennsylvanian Lower Atoka Formation, Ouachita Mountains, USA[J]. Journal of Sedimentary Research, 2021, 91(7): 683-709. |
| [69] | SOUDKHAH M, PAK R Y S. Wave absorbing-boundary method in seismic centrifuge simulation of vertical free-field ground motion[J]. Computers and Geotechnics, 2012, 43: 155-164. |
| [70] | CHEN J, JIANG Z, PANG H, et al. Lateral migration of petroleum in the Jurassic Toutunhe Formation in the Fudong Slope, Junggar Basin, China[J]. Resource Geology, 2014, 64(1): 35-46. |
| [71] | WANG Y, RUAN Z, YU B, et al. Statistical analysis of the Hurst index indicating sedimentary processes’ evolution trend in the deep lacustrine mudrock sequences: a case study of the Jiyang Depression, Bohai Bay Basin, Eastern China[J]. Sedimentary Geology, 2024, 470: 106712. |
| [72] | CAO T, YAO W, LI Z, et al. Geochemical characteristics of lacustrine shale and enrichment mechanism of organic matter in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 558-564. |
| [73] | YU L, PENG J, XU T, et al. A study on astronomical cycle identification and environmental response characteristics of lacustrine deep-water fine-grained sedimentary rocks: a case study of the Lower Submember of Member 3 of Shahejie Formation in Well Fanye-1 of Dongying Sag, Bohai Bay Basin, China[J]. Geofluids, 2021, 5595829. DOI: 10.1155/2021/5595829. |
| [74] | SHI J, JIN Z, LIU Q, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214. |
| [75] | SUN S, LIU H, CAO Y, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: a case study of the upper Es4 member of well NY1 in Dongying sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858. |
| [76] | CASTLE J W, MOLZ F J, LU S L, et al. Sedimentology and fractal-based analysis of permeability data, John Henry member, Straight Cliffs Formation (Upper Cretaceous), Utah, USA[J]. Journal of Sedimentary Research, 2004, 74(2): 270-284. |
| [77] | BOATENG C D, FU L Y. Analysis of reservoir heterogeneities and depositional environments: a new method[J]. Exploration Geophysics, 2018, 49(6): 868-880. |
| [78] | BAK P. How nature works: the science of self-organized criticality[M]. New York: Copernicus, 1996. |
| [79] | 於崇文. 地质系统的复杂性(上、下册)[M]. 北京: 地质出版社, 2003. |
| [80] | DINEEN D D, HANDLEY W J. Analytic approximations for the primordial power spectrum with israel junction conditions[J]. Physical Review D, 2024, 109(8): 083513. |
| [81] | RUSECKAS J, KAZAKEVIČI R, KAULAKYS B. Coupled nonlinear stochastic differential equations generating arbitrary distributed observable with 1/f noise[J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016(4): 043209. |
| [82] | RUSECKAS J, KAULAKYS B. 1/f noise from nonlinear stochastic differential equations[J]. Physical Review E, 2010, 81(3): 031105. |
| [83] | 於崇文, 岑况, 龚庆杰, 等. 湖南郴州柿竹园超大型钨多金属矿床的成矿复杂性研究[J]. 地学前缘, 2003 (3): 15-39. |
| [84] | TON R, DAFFERTSHOFER A. Model selection for identifying power-law scaling[J]. NeuroImage, 2016, 136: 215-226. |
| [85] | KNOWLES S F, MACKAY E K R, THORNEYWORK A L. Interpreting the power spectral density of a fluctuating colloidal current[J]. Journal of Chemical Physics, 2024, 161(14): 144905. |
| [86] | KHAJEHDEHI O, KARIMI K, DAVIDSEN J. The Effect of correlated permeability on fluid-induced seismicity[J]. Geophysical Research Letters, 2022, 49(4): e2021GL095199. |
| [87] | LEARY P C, AL-KINDY F. Power-law scaling of spatially correlated porosity and log(permeability) sequences from north-central North Sea Brae oilfield well core: power-law scaling of porosity and permeability core sequences[J]. Geophysical Journal International, 2002, 148(3): 426-442. |
| [88] | ELLWOOD B B, TOMKIN J H, FEBO L A, et al. Time series analysis of magnetic susceptibility variations in deep marine sedimentary rocks: a test using the Upper Danian-Lower Selandian proposed GSSP, Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(3/4): 270-279. |
| [89] | 李凤杰, 赵俊兴. 基于Matlab的测井曲线频谱分析及其在地质研究中的应用: 以川东北地区二叠系长兴组为例[J]. 天然气地球科学, 2007, 18(4): 531-534. |
| [90] | KODAMA K P, HINNOV L A. Rock magnetic cyclostratigraphy[M]. New Jersey: Wiley-Blackwell, 2015. |
| [91] | 闫建平, 言语, 彭军, 等. 湖相泥页岩天文地层旋回测井识别在沾化凹陷沙三下亚段的应用[J]. 测井技术, 2017, 41(6): 701-707. |
| [92] | 刘苏峡, 莫兴国, 夏军, 等. 用斜率和曲率湿周法推求河道最小生态需水量的比较[J]. 地理学报, 2006(3): 273-281. |
| [93] | 杨尚瑾, 武守远, 戴朝波. 基于电流波形曲率的短路故障快速识别方法[J]. 电网技术, 2013, 37(2): 551-556. |
| [94] | CHEN Z, HU K, CARPENA P, et al. Effect of nonlinear filters on detrended fluctuation analysis[J]. Physical Review E, 2005, 71(1): 011104. |
| [95] | FAN Q, LI D, LING G, et al. Effect of filters on multivariate multifractal detrended fluctuation analysis[J]. Fractals, 2021, 29(3): 2150047. |
| [96] | 吴胜阳. 椭圆函数低通滤波器的设计[J]. 新乡学院学报(自然科学版), 2008, 25(4): 18-20. |
| [97] | 李婵娟, 傅世强, 孙爽. 一种椭圆函数微带低通滤波器的设计与实现[J]. 电子科技, 2015, 28(11): 69-70, 74. |
| [98] | LI M, HINNOV L, KUMP L. Acycle: time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. |
| [99] | ZHANG B, YAO S, HU W, et al. Hydrocarbon source rock characteristics and shale gas potential of Permian marine shales in the Lower Yangtze region of South China[J]. AAPG Bulletin, 2024, 108(4): 719-749. |
| [100] | ZOU C, PAN S, HORSFIELD B, et al. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos Basin, Central China[J]. AAPG Bulletin, 2019, 103(11): 2627-2663. |
| [101] | 赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127. |
| [102] | HE Q, DONG T, HE S. Pore characteristics and evolution mechanisms of paralic shales from the Upper Permian Longtan Formation, southwestern China[J]. AAPG Bulletin, 2024, 108(6): 1033-1067. |
| [103] | LV J, JIANG F, HU T, et al. Control of complex lithofacies on the shale oil potential in ancient alkaline lacustrine basins: the Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Geoenergy Science and Engineering, 2023, 224: 211501. |
| [104] | 韩文中, 赵贤正, 金凤鸣, 等. 渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践[J]. 石油勘探与开发, 2021, 48(4): 777-786. |
| [105] | ADEYILOLA A, ZAKHAROVA N, LIU K, et al. Porosity distribution in the Devonian Antrim Shale: controlling factors and implications for gas sorption[J]. International Journal of Coal Geology, 2023, 272: 104251. |
| [106] | 赵贤正, 蒲秀刚, 金凤鸣, 等. 黄骅坳陷页岩型页岩油富集规律及勘探有利区[J]. 石油学报, 2023, 44(1): 158-175. |
| [107] | KATZ A J, THOMPSON A H. Fractal sandstone pores: implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325. |
| [108] | HUAN D D, AGARWAL R P. Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Levy noise[J]. Stochastics & Dynamics, 2021, 21(2): 24. |
| [109] | JOELSON M, GOLDER J, BELTRAME P, et al. On fractal nature of groundwater level fluctuations due to rainfall process[J]. Chaos Solitons & Fractals, 2016, 82: 103-115. |
| [110] | CAMPBELL B A, GHENT R R, SHEPARD M K. Limits on inference of Mars small-scale topography from MOLA data[J]. Geophysical Research Letters, 2003, 30(3), 1115. |
| [111] | JORDAN T M, COOPER M A, SCHROEDER D M, et al. Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland[J]. The Cryosphere, 2017, 11(3): 1247-1264. |
| [112] | 张驰, 关平, 张济华, 等. 分形理论表征非常规油气储层孔隙结构特征研究进展[J]. 北京大学学报(自然科学版), 2023, 59(5): 897-908. |
| [113] | 王玥蕴, 于炳松, 沈臻欢. 砂岩孔喉结构复杂性定量表征及其对渗透率的影响: 以东营凹陷沙河街组为例[J]. 油气地质与采收率, 2022, 29(5): 39-48. |
| [114] | SHEN Z H, YU B S, RUAN Z, et al. Characteristics of pore systems in the oil-bearing sandstones of the Dongying Depression, Bohai Bay Basin[J]. Journal of Petroleum Science and Engineering, 2022, 218, 111031. |
| [115] | CHEN Y F, JIANG C B, LEUNG J Y, et al. Multiscale characterization of shale pore-fracture system: Geological controls on gas transport and pore size classification in shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108442. |
| [116] | 董鑫旭, 孟祥振, 蒲仁海. 基于致密砂岩储层孔喉系统分形理论划分的可动流体赋存特征认识[J]. 天然气工业, 2023, 43(3): 78-90. |
| [117] | PENG Q, YIWEN J, JIANCHAO C, et al. Micro-nanopore structure and fractal characteristics of tight sandstone gas reservoirs in the eastern Ordos Basin, China[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(1): 234-245. |
| [118] | MANDELBROT B B, WHEELER J A. The Fractal Geometry of Nature[J]. American Journal of Physics, 1983, 51(3): 286-287. |
| [119] | YOU Z, SONGTAO W, ZHIPING L, et al. Multifractal study of three-dimensional pore structure of sand-conglomerate reservoir based on CT images[J]. Energy & Fuels, 2018, 32(4): 4797-4807. |
| [120] | 陈富瑜, 周勇, 杨栋吉, 等. 基于分形理论的致密砂岩储层孔隙结构研究: 以鄂尔多斯盆地庆城地区延长组长7段为例[J]. 中国矿业大学学报, 2022, 51(5): 941-955. |
| [121] | 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5): 97-105. |
| [122] | 管全中, 董大忠, 孙莎莎, 等. 深层富有机质页岩孔隙结构分形特征及其地质意义: 以四川盆地威远地区下志留统龙马溪组为例[J]. 天然气工业, 2024, 44(3): 108-118. |
| [123] | 贺小标, 罗群, 李鑫, 等. 陆相混积页岩不同岩相孔隙差异特征及影响机制: 以吉木萨尔凹陷二叠系芦草沟组为例[J]. 中国矿业大学学报, 2024, 53(1): 141-157, 210. |
| [124] | 罗文彬, 马中良, 郑伦举, 等. 海相页岩成岩-成烃过程中孔隙结构的演变: 来自热模拟实验的启示[J]. 石油学报, 2020, 41(5): 540-552. |
| [125] | ELIAZAR I I, SHLESINGER M F. Fractional motions[J]. Physics Reports, 2013, 527(2): 101-129. |
| [1] | DU Zhenjing, CHEN Dongxia, LIU Huimin, JIAO Hongyan, MA Yiquan. High-resolution stratigraphic quantitative division and isochronous comparison of upper fourth member of Shahejie Formation in Zhanhua Depression under astronomical cycle constraints [J]. Earth Science Frontiers, 2025, 32(5): 85-96. |
| [2] | SHEN Luyin, PAN Renfang, LÜ Haitao, DUAN Taizhong, HE Tingting, LIU Yisheng, ZHAO Lei. Quantitative analysis of total accommodation space based on sedimentary simulation [J]. Earth Science Frontiers, 2024, 31(2): 391-401. |
| [3] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
| [4] | YUAN Yuxuan, LI Yifan, FAN Tailiang, DU Wei, CHEN Gege, ZHANG Tan, KUANG Mingzhi, LIU Wangwei. High-resolution sequence-stratigraphic characteristics and filling evolution model of Lower Cambrian fine-grained sedimentary rocks in southwestern Sichuan [J]. Earth Science Frontiers, 2023, 30(6): 162-180. |
| [5] | SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks [J]. Earth Science Frontiers, 2023, 30(4): 142-151. |
| [6] | KUANG Mingzhi, LI Yifan, FAN Tailiang, ZHANG Tan, LIU Wangwei, LIU Nan. Application of high-precision sequence stratigraphy in marine fine-grained sedimentary rocks: A case study of the Doushantuo Formation in northern Sichuan [J]. Earth Science Frontiers, 2023, 30(4): 164-181. |
| [7] | HE Bizhu, JIAO Cunli, LIU Ruohan, CAO Zicheng, CAI Zhihui, LAN Mingjie, YUN Xiaorui, ZHU Ding, JIANG Zhongzheng, YANG Yujie, LI Zhenyu. The paleotectonic and paleogeography reconstructions of the Tarim Basin in the Neoproterozoic and prediction of favorable deep source rock areas [J]. Earth Science Frontiers, 2023, 30(4): 19-42. |
| [8] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
| [9] | YANG Kunkun, LI Haiyan, ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong. Cyclostratigraphic study of the Neoproterozoic Browne-Hussar formations in western Australia [J]. Earth Science Frontiers, 2023, 30(3): 441-451. |
| [10] | SHEN Luyin, PAN Renfang, DUAN Taizhong, LIU Yanfeng, LI Meng, LIAN Peiqing, HUANG Yuan, ZHANG Demin. Deep-time sea-level change curve recovery: A recovery method based on stratigraphic inverse modeling [J]. Earth Science Frontiers, 2023, 30(2): 109-121. |
| [11] | HAN Haiying, GUO Rui, WANG Jun, QIN Guosheng, SUN Xiaowei, YU Yichang, SU Haiyang, GAO Yang. Sequence stratigraphic framework and sedimentary evolution of the Cretaceous in southern Iraq [J]. Earth Science Frontiers, 2023, 30(2): 122-138. |
| [12] | LI Yongjun, LI Hai, NING Wentao, XU Qian, REN Pengfei, TAO Xiaoyang. Redefining the Heishantou Formation and defining the Aketamu Formation in West Junggar, Xinjiang [J]. Earth Science Frontiers, 2021, 28(2): 348-361. |
| [13] | CHEN Huanqing, ZHU Xiaomin, ZHANG Gongcheng, ZHANG Yaxiong, ZHANG Qin, LIU Changli. Classification and combination model characteristics of pathway system in marine faulted basin: Taking the Paleogene Lingshui Formation, Qiongdongnan Basin as an example [J]. Earth Science Frontiers, 2021, 28(1): 282-294. |
| [14] | DONG Yanlei, ZHU Xiaomin, WEI Minpeng, LI Shunli, ZHAO Ruixing, JIA Tianpeng, GUAN Weifeng, ZHANG Yaxiong. Jurassic sequence framework and sedimentary system distribution in the Wudun Sag, Dunhuang Basin [J]. Earth Science Frontiers, 2021, 28(1): 177-189. |
| [15] | ZHANG Yina, CAI Wenjie, YANG Songling, ZHANG Ke, CHEN Jingyang. Sedimentary characteristics of the Jurassic shelf-edge delta and oil and gas exploration in the Papuan Basin [J]. Earth Science Frontiers, 2021, 28(1): 167-176. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||