Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 377-388.DOI: 10.13745/j.esf.sf.2025.8.55
Previous Articles Next Articles
QU Linbo1,2(), YUE Dali1,2,*(
), WANG Wurong1,2, JIN Wujun3, LAI Hechuan1,2, WU Qingzhao3, LIAO Changzhen3, FU Jialin1,2, ZHANG Jiarui1,2, LI Wei1,2
Received:
2025-08-05
Revised:
2025-08-14
Online:
2025-09-25
Published:
2025-10-14
Contact:
YUE Dali
CLC Number:
QU Linbo, YUE Dali, WANG Wurong, JIN Wujun, LAI Hechuan, WU Qingzhao, LIAO Changzhen, FU Jialin, ZHANG Jiarui, LI Wei. Variable rock-electrical saturation model for dual-medium tight sandstones: A case from the second member of the Upper Triassic Xujiahe Formation, Western Sichuan Depression[J]. Earth Science Frontiers, 2025, 32(5): 377-388.
储层类型 | 变岩电参数含水饱和度计算公式 | 胶结指数m计算公式 | 饱和度指数n | 岩性指数b |
---|---|---|---|---|
裂缝型储层 | Sw=${\left(\frac{{b}_{1}{R}_{w}}{{Ф}^{{m}_{1}}{R}_{t}}\right)}^{\frac{1}{{n}_{1}}}$ | m1=0.69Ф-0.12RD-0.33RQI-0.05AC-0.17GR | n1=3.626 | b1=1.126 3 |
裂缝-孔隙 复合型储层 | Sw=${\left(\frac{{b}_{2}{R}_{w}}{{Ф}^{{m}_{2}}{R}_{t}}\right)}^{\frac{1}{{n}_{2}}}$ | m2=1.23Ф-0.34RD-0.33RQI-0.14AC-0.41GR | n2=3.023 | b2=1.108 9 |
孔隙型储层 | Sw=${\left(\frac{{b}_{3}{R}_{w}}{{Ф}^{{m}_{3}}{R}_{t}}\right)}^{\frac{1}{{n}_{3}}}$ | m3=0.69Ф-0.16RD+0.05RQI+0.51AC | n3=2.068 | b3=1.010 9 |
Table 1 Variable rock-electrical parameter saturation models based on reservoir classification
储层类型 | 变岩电参数含水饱和度计算公式 | 胶结指数m计算公式 | 饱和度指数n | 岩性指数b |
---|---|---|---|---|
裂缝型储层 | Sw=${\left(\frac{{b}_{1}{R}_{w}}{{Ф}^{{m}_{1}}{R}_{t}}\right)}^{\frac{1}{{n}_{1}}}$ | m1=0.69Ф-0.12RD-0.33RQI-0.05AC-0.17GR | n1=3.626 | b1=1.126 3 |
裂缝-孔隙 复合型储层 | Sw=${\left(\frac{{b}_{2}{R}_{w}}{{Ф}^{{m}_{2}}{R}_{t}}\right)}^{\frac{1}{{n}_{2}}}$ | m2=1.23Ф-0.34RD-0.33RQI-0.14AC-0.41GR | n2=3.023 | b2=1.108 9 |
孔隙型储层 | Sw=${\left(\frac{{b}_{3}{R}_{w}}{{Ф}^{{m}_{3}}{R}_{t}}\right)}^{\frac{1}{{n}_{3}}}$ | m3=0.69Ф-0.16RD+0.05RQI+0.51AC | n3=2.068 | b3=1.010 9 |
[1] | MALEKIMOSTAGHIM E, GHOLAMI R, REZAEE R, et al. A laboratory-based approach to determine archie’s cementation factor for shale reservoirs[J]. Journal of Petroleum Science & Engineering, 2019, 183: 106399. |
[2] | GUO J, ZHANG Z, ZHANG C, et al. Enhanced water saturation evaluation method using an improved electrical efficiency model: a case study of the Mishrif Formation, Iraq[J]. Journal of Applied Geophysics, 2025, 236: 105656. |
[3] | 胡国农, 郝世彦, 樊平天, 等. 鄂尔多斯盆地NNW油区再开发潜力分析[J]. 地学前缘, 2023, 30(1): 106-115. |
[4] | ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62. |
[5] | 孙建孟, 王克文, 李伟. 测井饱和度解释模型发展及分析[J]. 石油勘探与开发, 2008(1): 101-107. |
[6] | 李霞, 李潮流, 李波, 等. 致密砂岩岩电响应规律与饱和度评价方法[J]. 石油勘探与开发, 2020, 47(1): 202-212. |
[7] | 卢俊辉, 张小莉, 杨振, 等. 致密砂岩储层变岩电参数法饱和度计算模型: 以苏里格气田西区盒8段为例[J]. 现代地质, 2022, 36(4): 1131-1137. |
[8] | 张帆, 闫建平, 李尊芝, 等. 碎屑岩阿尔奇公式岩电参数与地层水电阻率研究进展[J]. 测井技术, 2017, 41(2): 127-134. |
[9] | 游利军, 吴需要, 康毅力, 等. 致密砂岩电学参数的非阿尔奇现象[J]. 地球物理学进展, 2016, 31(5): 2226-2231. |
[10] | SHAH S A, SHAH S H, BIBI A, et al. Petrophysical evaluation using the geometric factor theory and comparison with archie model[J]. Journal of Natural Gas Science and Engineering, 2020, 82: 103465. |
[11] | TIAN J, WANG L, OSTADHASSAN M, et al. Pore structure exponent of archie’s law in a dual-porosity medium: vuggy reservoirs[J]. Geoenergy Science and Engineering, 2024, 234: 212659. |
[12] | Improved Models for Petrophysical Analysis of Dual Porosity Reservoirs[J]. Petrophysics - the SPWLA Journal, 2003, 44(1): 21-35. |
[13] | 王谦. 致密砂岩饱和度模型与含水率评价方法研究[D]. 北京: 中国地质大学(北京), 2021. |
[14] | TIAN J, SIMA L qiang, WANG L, et al. A novel triple-porosity model for fractured-vuggy reservoirs based on maxwell-garnett mixing rule[J]. Journal of Petroleum Science & Engineering, 2022, 208: 109362. |
[15] | AL-GHAMDI A, CHEN B, BEHMANESH H, et al. An improved triple-porosity model for evaluation of naturally fractured reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(4): 377-384. |
[16] | 漆立新, 樊政军, 李宗杰, 等. 塔河油田碳酸盐岩储层三孔隙度测井模型的建立及其应用[J]. 石油物探, 2010, 49(5): 489-494. |
[17] | 潘保芝, 阿茹罕, 郭宇航, 等. 裂缝性岩石低频下复电阻率与饱和度关系研究[J]. 地球物理学报, 2021, 64(10): 3774-3787. |
[18] | 范雨霏, 潘保芝, 郭宇航, 等. 利用数字岩心技术评价含黏土砂岩导电模型[J]. 吉林大学学报(地球科学版), 2021, 51(3): 919-926. |
[19] | WANG S, TAN M, WANG X, et al. Microscopic response mechanism of electrical properties and saturation model establishment in fractured carbonate rocks[J]. Journal of Petroleum Science & Engineering, 2022, 208: 109429. |
[20] | 刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2): 31-40. |
[21] | 赵正望, 唐大海, 王小娟, 等. 致密砂岩气藏天然气富集高产主控因素探讨: 以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972. |
[22] | 潘磊, 杜红权, 李雷涛, 等. 川东北元坝地区上三叠统须家河组天然裂缝发育特征与主控因素[J]. 地学前缘, 2024, 31(5): 156-165. |
[23] | 刘君龙, 刘忠群, 肖开华, 等. 四川盆地新场地区三叠系须家河组二段致密砂岩有利岩石相表征及油气地质意义[J]. 石油勘探与开发, 2020, 47(6): 1111-1121. |
[24] | 刘君龙, 孙冬胜, 纪友亮, 等. 川西晚侏罗世前陆盆地浅水三角洲砂体分布特征与叠置模式[J]. 石油与天然气地质, 2018, 39(6): 1164-1178. |
[25] | 管树巍, 梁瀚, 姜华, 等. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘, 2022, 29(6): 252-264. |
[26] | 马旭杰, 周文, 唐瑜, 等. 川西新场地区须家河组二段气藏天然裂缝形成期次的确定[J]. 天然气工业, 2013, 33(8): 15-19. |
[27] | 刘君龙, 胡宗全, 刘忠群, 等. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理[J]. 石油与天然气地质, 2021, 42(4): 852-862. |
[28] | 刘君龙, 刘忠群, 刘振峰, 等. 四川盆地新场构造带深层须二段致密砂岩断褶裂缝体特征和地质模式[J]. 石油勘探与开发, 2023, 50(3): 530-540. |
[29] | 严焕榕, 詹泽东, 李亚晶, 等. 致密砂岩气藏高产富集规律研究: 以川西坳陷新场-合兴场须家河组二段气藏为例[J]. 油气藏评价与开发, 2024, 14(4): 541-548, 576. |
[30] | 李开发, 张楚越, 朱亮, 等. 低渗透砂岩有水气藏改建地下储气库可行性评价: 以四川盆地中坝气田须二段气藏为例[J]. 天然气技术与经济, 2024, 18(1): 32-38. |
[31] | 王永诗, 高阳, 方正伟. 济阳坳陷古近系致密储集层孔喉结构特征与分类评价[J]. 石油勘探与开发, 2021, 48(2): 266-278. |
[32] | 张丽华, 潘保芝, 单刚义, 等. 阿尔奇公式中饱和度指数影响因素及特征概述[J]. 地球物理学进展, 2023, 38(3): 1247-1256. |
[33] | WU F, WEN Z, YAO C, et al. Numerical simulation of the influence of pore structure on resistivity, formation factor and cementation index in tight sandstone[J]. Acta Geologica Sinica (English Edition), 2020, 94(2): 290-304. |
[34] | 白松涛, 万金彬, 杨锐祥, 等. 地层水电阻率评价方法综述[J]. 地球物理学进展, 2017, 32(2): 566-578. |
[1] | YUE Dali, LI Wei, WANG Wurong, WU Shenghe, LI Honghui, LIU Jingyang, LIU Lei, XU Zimo, LIN Jin, WU Guangzhen. Advances and prospects of meandering river sedimentary architecture research [J]. Earth Science Frontiers, 2025, 32(5): 113-130. |
[2] | REN Zhanli, YANG Peng, QI Kai, CUI Junping, YU Qiang, CHENG Xin, HUANG Lei, CHEN Gang, YAO Juwen. Research status and progress of tectonic-thermal evolution history in Qiangtang Basin [J]. Earth Science Frontiers, 2025, 32(5): 12-27. |
[3] | WU Pengfei, WU Jun, FAN Tailiang, LIU Qian, ZHANG Weiguo, YANG Suju, XIA Yongtao, LAN Mingjie. Sedimentary units composition and evolution characteristics of the slope fan system of the Upper Ordovician in the Shunnan area, Tarim Basin [J]. Earth Science Frontiers, 2025, 32(5): 131-149. |
[4] | WANG Wurong, LIU Xianyang, YUE Dali, WAN Xiaolong, LIU Ruijing, LI Shixiang, LU Hao, LIU Jian, WU Guangzhen, WU Shenghe. Distribution of quality difference of tight sandstone reservoirs in sublacustrine fan of depression lacustrine basin: A case study of Chang 6 oil-bearing interval of Yanchang Formation in Heshui area, Ordos Basin, China [J]. Earth Science Frontiers, 2025, 32(5): 190-204. |
[5] | YANG Yiqing, TAO Shizhen, LI Jian, YANG Wei, CHEN Yue, GAO Jianrong, WANG Xiaobo, CHEN Yanyan, LIU Xiangbai. The static geological elements and dynamic processes of the helium-bearing systems [J]. Earth Science Frontiers, 2025, 32(5): 230-243. |
[6] | CHEN Youzhi, ZANG Dianguang, HU Gang, FENG Xukui, WANG Xiaoyang, XIAO Dong, CHEN Ying, XU Min, LIANG Hong, WU Yulin, CHEN Hui, GUO Haiyang, ZHAO Zhenwei, GUO Shuang, ZHOU Yuezong, TAO Jun. Tectonic framework and oil-gas geological significance of Late Permian Changxing Period in Sichuan Basin [J]. Earth Science Frontiers, 2025, 32(5): 28-37. |
[7] | LI Shengli, ZHANG Yaxiong, YU Xinghe, FU Chao, MA Xibin. Sedimentary elements of heterogeneity evaluation and sweet spot prediction strategies on sedimentary facies controlled tight gas reservoirs in coal-bearing intervals: Examples from the Ordos Basin [J]. Earth Science Frontiers, 2025, 32(5): 389-403. |
[8] | YIN Senlin, LIN Shaoling, HU Zhangming, ZHAO Junwei, YANG Yingtao, ZHANG Ling, CHEN Gongyang, CHEN Weichang. 3D model of mineral interior tight sandstone reservoir and distribution of fracture dessert: Taking 2nd Xujiahe Formation outcrop section in western Sichuan Basin as an example [J]. Earth Science Frontiers, 2025, 32(5): 404-416. |
[9] | WAN Xiaolong, WU Shenghe, ZHOU Xinping, XU Zhenhua, FU Jinhua, WANG Zifeng, MA Shuwei, WU Degang, LI Zhen, LIU Mingcheng. Research on the prediction method of 3D reservoir sweet spots distribution of shale oil in shale intercalated layer: A case from the Yanchang Formation of B15 block, Ordos Basin [J]. Earth Science Frontiers, 2025, 32(5): 417-431. |
[10] | ZHANG Tao, LI Yanping, LI Zekai, LIU Dongcheng, WANG Jing. Fractures identification of deep tight reservoir with well logging based on Improved Long Short-Term Memory neural network [J]. Earth Science Frontiers, 2025, 32(5): 456-465. |
[11] | ZHAO Li, DONG Dawei, LI Zhipeng, LIANG Jianjun, WANG Guangzeng. The characteristic and mechanics of distributed strike-slip faults in Moxizhuang area, interior of the Junggar Basin [J]. Earth Science Frontiers, 2025, 32(5): 52-67. |
[12] | DU Zhenjing, CHEN Dongxia, LIU Huimin, JIAO Hongyan, MA Yiquan. High-resolution stratigraphic quantitative division and isochronous comparison of upper fourth member of Shahejie Formation in Zhanhua Depression under astronomical cycle constraints [J]. Earth Science Frontiers, 2025, 32(5): 85-96. |
[13] | ZHANG Xinlei, FANG Chengming, GAO Zhiqian, FENG Fan, ZHANG Jibiao, ZHOU Jiaquan. Tectono-sedimentary environment and lithofacies paleogeographic pattern of the Xiaqiulitage Formation in the Tarim Basin, NW China [J]. Earth Science Frontiers, 2025, 32(5): 97-112. |
[14] | LIU Binglei, ZHAO Yonggang, ZHANG Yintao, ZHOU Fei, XIE Zhou, YAO Chao, YIN Shuai, DING Liuyang, ZHAO Longfei, SUN Chong. Structural analysis and reservoir-controlling significance of No.19 strike-slip fault in the eastern Aman transition zone, Tarim Basin [J]. Earth Science Frontiers, 2025, 32(4): 453-470. |
[15] | YANG Debin, GAO Jiyuan, ZHANG Heng, CAI Zhongxian, LÜ Yanping, ZHANG Juan, WANG Yan. Types, development characteristics and formation conditions of large paleokarst conduits in the Ordovician, Tahe Oilfield, Tarim Basin [J]. Earth Science Frontiers, 2025, 32(4): 483-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||