Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 218-230.DOI: 10.13745/j.esf.sf.2025.3.17
Previous Articles Next Articles
XIAO Yunting(), CAI Chenkang, HUANG Yixin, ZHU Jialei*(
)
Received:
2024-12-30
Revised:
2025-01-16
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze[J]. Earth Science Frontiers, 2025, 32(3): 218-230.
物理过程 | 参数化方案 |
---|---|
微物理过程 | WSM方案[ |
短波辐射 | Goddard短波方案[ |
近地面层 | MYJ Monin-Obukhov方案[ |
陆面过程 | Noah陆面过程方案[ |
边界层 | Eta Mellor-Yamada-Janjic TKE方案[ |
积云参数化 | Kain-Fritsch方案[ |
Table 1 Parameterizations schemes used for simulation
物理过程 | 参数化方案 |
---|---|
微物理过程 | WSM方案[ |
短波辐射 | Goddard短波方案[ |
近地面层 | MYJ Monin-Obukhov方案[ |
陆面过程 | Noah陆面过程方案[ |
边界层 | Eta Mellor-Yamada-Janjic TKE方案[ |
积云参数化 | Kain-Fritsch方案[ |
Fig.1 Schematic of the simulation area. Quoted from the National Platform for Common Geospatial Information Services China map 1∶32 million 32 cuttings version with line delineation 1
Fig.2 Inter-annual trends in diurnal sea surface temperature (DSST) differences. with dots indicating daily changes in mean DSST, and the upper end of the error line showing the maximum daily change in DSST during the year, and the lower end showing the minimum daily change in DSST during that year.
Fig.4 Interannual variation characteristics of regional annual mean SST. The line graph represents the average SST for each corresponding year in the study region, while the shaded area indicates the range between the maximum and minimum SST values for that year.
Fig.6 Four-hourly average wind rose for part of the South China Sea. The red sectors represent the land breeze wind direction range, while the blue sectors represent the sea breeze wind direction range. Panels (a) to (f) correspond to the local times of 00:00-03:00, 04:00-07:00, 08:00-11:00, 12:00-15:00, 16:00-19:00, and 20:00-23:00, respectively.
Fig.7 Four-hourly average wind rose for the Bohai Sea. The red sectors represent the land breeze wind direction range, while the blue sectors represent the sea breeze wind direction range. Panels (a) to (f) correspond to the local times of 00:00-03:00, 04:00-07:00, 08:00-11:00, 12:00-15:00, 16:00-19:00, and 20:00-23:00, respectively.
[1] | MILLER S T K, KEIM B D, TALBOT R W, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics, 2003, 41(3): 1011. |
[2] | 沈傲, 田春艳, 刘一鸣, 等. 海陆风环流中海盐气溶胶对大气影响的模拟[J]. 中国环境科学, 2019, 39: 1427-1435. |
[3] | CROSMAN E T, HOREL J D. Sea and lake breezes: a review of numerical studies[J]. Boundary-Layer Meteorology, 2010, 137(1): 1-29. |
[4] | MA Y, XIN J, ZHANG X, et al. Land-sea breeze circulation structure on the west coast of the Yellow Sea, China[J]. Atmospheric and Oceanic Science Letters, 2021, 14(1): 100003. |
[5] | XIAO Y T, YANG J B, CUI L H, et al. Weakened sea-land breeze in a coastal megacity driven by urbanization and ocean Warming[J]. Earths Future, 2023, 11(8): e2022EF003341. |
[6] | AZORIN-MOLINA C, CHEN D. A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain)[J]. Theoretical and Applied Climatology, 2009, 96(3/4): 249-260. |
[7] | DAVIS S R, FARRAR J T, WELLER R A, et al. The land-sea breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(24): 13803-13825. |
[8] | YAO Y, ZOU X, ZHAO Y, et al. Rapid changes in land-sea thermal contrast across China’s coastal zone in a warming climate[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(4): 2049-2467. |
[9] | DING A, WANG T, ZHAO M, et al. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the pearl river delta of China[J]. Atmospheric Environment, 2004, 38(39): 6737-6750. |
[10] | ZHANG Q, HU W, REN H, et al. Diurnal variations in primary and secondary organic aerosols in an eastern China coastal city: the impact of land-sea breezes[J]. Environmental Pollution, 2023, 319: 121016. |
[11] | FAN J, ZHANG Y, LI Z, et al. Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 14163-14182. |
[12] | CHEN Y P, YANG C, XU L L, et al. Variations of chemical composition of NR-PM1 under the influence of sea land breeze in a coastal city of Southeast China[J]. Atmospheric Research, 2023, 285: 106626 |
[13] | SHEN L, ZHAO C, YANG X, et al. Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australia mega fire events[J]. Atmospheric Chemistry and Physics, 2022, (20): 419-439 |
[14] | SHI J R, SANTER B D, KWON Y O, et al. The emerging human influence on the seasonal cycle of sea surface temperature[J]. Nature Climate Change, 2024, 14(4): 364-372 |
[15] | GARCIA-SOTO C, CHENG L J, CAESAR L, et al. An overview of ocean climate change indicators: sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, Arctic Sea ice extent, thickness and volume, Sea level and strength of the AMOC (Atlantic meridional overturning circulation)[J]. Frontiers in Marine Science, 2021, (8): 642372 |
[16] | JIN S S, WEI Z X, WANG D Q, et al. Simulated and projected SST of Asian marginal seas based on CMIP6 models[J]. Frontiers in Marine Science, 2023, 10: 1178974 |
[17] | CHENG L J, ABRAHAM J, TRENBERTH K E, et al. Another record: ocean warming continues through 2021 despite La Nina conditions[J]. Advances in Atmospheric Sciences, 2022, 39(3): 373-385. |
[18] | ZHANG Q B, LIU B, LI S L, et al. Understanding models’ global sea surface temperature bias in mean state: from CMIP5 to CMIP6[J]. Geophysical Research Letters, 2023, 50(4): 2022GL100888 |
[19] | 彭京备. 东印度洋海温对中国南方冬季降水的影响[J]. 气候与环境研究, 2012, 17(3): 327-338. |
[20] | 徐海明, 何金海, 董敏. 江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系[J]. 气象学报, 2001, 59(6): 694-706. |
[21] |
李刚, 李崇银, 江晓华, 等. 1900—2009年全球海表温度异常的时空变化特征分析[J]. 热带海洋学报, 2015, 34(4): 12-22.
DOI |
[22] | 易香妤, 董文杰, 李劭怡, 等. 中国东海黑潮海温变化特征及成因分析[J]. 海洋预报, 2021, 38(3): 38-51. |
[23] | 周明颉, 简茂球. 热带印度洋及周边海温对ENSO响应的年代际变化[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(1): 64-74. |
[24] | 蔡榕硕, 谭红建, 黄荣辉. 中国东部夏季降水年际变化与东中国海及邻近海域海温异常的关系[J]. 大气科学, 2012, 36(1): 35-45. |
[25] | 王洁, 王杰, 许佳峰, 等. 长江口邻近海域海表温度变化特征分析[J]. 海洋科学进展, 2020, 38(4): 624-634. |
[26] | BIGUINO B, ANTUNES C, LAMAS L, et al. 40 years of changes in sea surface temperature along the Western Iberian Coast[J]. Science of the Total Environment, 2023(888): 164193 |
[27] | GUAN W N, JIANG X A, REN X J, et al. Pacific Sea surface temperature anomalies as important boundary forcing in driving the interannual warm arctic-cold continent pattern over the North American Sector[J]. Journal of Climate, 2021, 34(14): 5923-5937. |
[28] | MAZON J, PINO D. The influence of an increase of the mediterranean sea surface temperature on two nocturnal offshore rainbands: a numerical experiment[J]. Atmosphere, 2017, 8(3): 58 |
[29] | 肖杭芳, 邓文峰, 韦刚健. 近2000年南海北部海表温度变化特征及其对全球变暖的启示[J]. 厦门大学学报(自然科学版), 2018, 57(6): 748-759. |
[30] | TIAN F, STORCH J-S V, HERTWIG E. Impact of SST diurnal cycle on ENSO asymmetry[J]. Climate Dynamics, 2018, 52(3/4): 2399-2411. |
[31] | SUN C, LIU Y S, WEI T, et al. Cross-hemispheric SST propagation enhances the predictability of tropical western Pacific climate[J]. NPJ climate and atmospheric science, 2022, 5(1): 38 |
[32] | ARMOUR K C, PROISTOSESCU C, DONG Y, et al. Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity[J]. Proceedings of the National Academy of Sciences, 2024, 121(12): e2312093121. |
[33] | L’HEUREUX M L, TIPPETT M K, WHEELER M C, et al. A relative sea surface temperature index for classifying ENSO events in a changing climate[J]. Journal of Climate, 2024, 37(4): 1197-1211. |
[34] | 马强, 颜京辉, 魏敏, 等. 北京气候中心CMIP6数据共享平台及应用[J]. 应用气象学报, 2022, 33(5): 617-627. |
[35] | NCAR. NCEP FNL operational model global tropospheric analyses, continuing from July 1999[M]. Boulder, CO: the National Center for Atmospheric Research, 2000. |
[36] | HAN S Q, HAO T Y, YANG X, et al. Land-sea difference of the planetary boundary layer structure and its influence on PM2.5: observation and numerical simulation[J]. Science of the Total Environment, 2023(858): 159881 |
[37] | CHEN Y P, HU R, BEDRA K B. Investigating the cooling impacts of Green Hearts in summer: a case study in the Changsha-Zhuzhou-Xiangtan urban agglomeration based on Weather Research Forecasting (WRF) simulations[J]. Urban Climate, 2024(58): 102235 |
[38] | HASSAN E M, KARIMKHANI M, SEPEHRI J. Evaluating and comparison of WRF-chem model configurations for wind field impact on the April 2022 dust episode in western Iran[J]. Atmospheric Environment, 2025(340): 120892 |
[39] | CHOU S C, CHANG H L, TOTH Z, et al. Evaluation, calibration, and application of probabilistic 100 m wind speed forecasts produced by the WRF ensemble prediction system in Taiwan[J]. Journal of Applied Meteorology and Climatology, 2025, 64(1): 3-19. |
[40] | POWERS J G, COAUTHORS. The weather research and forecasting model: overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 2017, 98: 1717-1737. |
[41] | HONG S-Y, LIM J-O J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42(2): 129-151. |
[42] | MIELIKAINEN J, HUANG B, HUANG H L A, et al. GPU acceleration of the updated Goddard shortwave radiation scheme in the weather research and forecasting (WRF) Model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 555-562. |
[43] | MELLOR G L, YAMADA. Development of a turbulence closure model for geophysical fluid problems[J]. Review of Geophysics, 1982, 20(4): 851-875 |
[44] | CHEN F. The Noah land surface model in WRF: a short tutorial,[J]. Journal of Advances in Modeling Earth Systems, 2019, 11: 231-256. |
[45] | KAIN J S. The Kain-Fritsch convective parameterization: an update[J]. Journal of applied meteorology, 2004, 43(1): 170-181. |
[46] | SHEN L X, ZHAO C F, YANG X C. Climate-driven characteristics of sea-land breezes over the globe[J]. Geophysical Research Letters, 2021, 48(7): 2020GL092308 |
[47] | SHEN L X, ZHAO C F, YANG X C, et al. Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events[J]. Atmospheric Chemistry and Physics, 2022, 22(1): 419-439. |
[48] | SHEN L X, ZHAO C F, MA Z S, et al. Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization[J]. Atmospheric Research, 2019(227): 198-209. |
[49] | KARAGALI I, HOYER J L. Characterizations and quantification of regional diurnal SST cycles from SEVIRI[J]. Ocean Science, 2014, 10(5): 745-758. |
[50] | KAWAI Y, WADA A. Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: A review[J]. Journal of Oceanography, 2007, 63(5): 721-744. |
[51] | EMBURY O, MERCHANT C J, GOOD S A, et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications[J]. Scientific Data, 2024, 11(1): s41597-024-03147-w |
[52] | 罗嘉琪, 李响, 张蕴斐, 等. 南海海表温度日变化特征及其影响因素研究[J]. 海洋预报, 2024, 41(1): 31-41. |
[53] | YANG C Y, NUTAKKI T U K, ALGHASSAB M A, et al. Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: dynamic modeling, data-driven optimization, and case study[J]. Journal of Cleaner Production, 2024(447): 141405 |
[54] | ALEXANDER M A, SCOTT J D, DESER C. Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16823-16842. |
[1] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
[2] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
[3] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[4] | CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change [J]. Earth Science Frontiers, 2025, 32(3): 52-61. |
[5] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[6] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[7] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
[8] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[9] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[10] | XIANG Wu, Jiasong Fang, MO Xiang, HE Ling, SUN Xin-Ting, BI Xiang-Yang. Driving mechanisms for the DOC increases in surface waters released from Northern Peatlands under global change. [J]. Earth Science Frontiers, 2011, 18(6): 72-78. |
[11] | YANG Zhong-Fang, JIA Hua-Ji, TU Chao, HOU Jing-Xie, FENG Hai-Yan. Soil carbon pool in the northeast Inner Mongolia and its influencing factors. [J]. Earth Science Frontiers, 2011, 18(6): 1-10. |
[12] | LIU Cong-Jiang, LANG Bin-Chao, LI Sai-Liang, PIAO He-Chun, CHU Cheng-Long, LIU Chao-Ze, ZHANG Wei. Researches on biogeochemical processes and nutrient cycling in karstic ecological systems, southwest China: A review. [J]. Earth Science Frontiers, 2009, 16(6): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||