Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 196-206.DOI: 10.13745/j.esf.sf.2025.3.16
Previous Articles Next Articles
WU Libin(), BAI Jingqi, ZHAO Qingzi, FU Pingqing*(
)
Received:
2025-01-09
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
WU Libin, BAI Jingqi, ZHAO Qingzi, FU Pingqing. Research progress and prospects of amino acids in the atmosphere[J]. Earth Science Frontiers, 2025, 32(3): 196-206.
Fig.1 Molecular composition of FAAs in the atmosphere. Based on the analyses of year-round PM2.5 samples collected from Tianhu, Guangzhou, China. Modified after [39].
Fig.2 A comparison of total FAAs concentrations in the atmosphere at different sampling sites. The figure shows the analysis results of TSP samples from the polar region (Antarctic Ross Sea area, the ocean (Atlantic Ocean), and mountainous areas (Mount Tai, China, as well as PM2.5 from rural areas (Jeju Island, South Korea) and urban areas (Tianjin, China). Adapted from [23,27-28,37,50].
Fig.3 Compound-specific stable nitrogen isotopic composition of free Gly in TSP samples from Mount Tai, China, during spring and autumn, as well as potential source samples, and the source apportionment results based on the Bayesian stable isotope mixing model “MixSIAR”. Modified after [28,72].
[1] |
HIETZ P, TURNER B L, WANEK W, et al. Long-term change in the nitrogen cycle of tropical forests[J]. Science, 2011, 334(6056): 664-666.
DOI PMID |
[2] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475. |
[3] |
STEVENS C J. Nitrogen in the environment[J]. Science, 2019, 363(6427): 578-580.
DOI PMID |
[4] |
FARZADFAR S, KNIGHT J D, CONGREVES K A. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition[J]. Plant and Soil, 2021, 462: 7-23.
DOI PMID |
[5] | ALTIERI K E, FAWCETT S E, HASTINGS M G. Reactive nitrogen cycling in the atmosphere and ocean[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 523-550. |
[6] | 李佩霖, 傅平青, 康世昌, 等. 大气气溶胶中的氮:化学形态与同位素特征研究进展[J]. 环境化学, 2016, 35(1): 1-10. |
[7] | NEFF J C, HOLLAND E A, DENTENER F J, et al. The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle?[J]. Biogeochemistry, 2002, 57: 99-136. |
[8] | LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. |
[9] | YANG Z, TSONA N T, GEORGE C, et al. Nitrogen-containing compounds enhance light absorption of aromatic-derived brown carbon[J]. Environmental Science & Technology, 2022, 56(7): 4005-4016. |
[10] | HU C C, LIU X Y, DRISCOLL A W, et al. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants[J]. Nature Communications, 2024, 15: 6407. |
[11] | 张倩. 北京PM2.5中有机氮的污染特征与来源研究[D]. 北京: 清华大学, 2015. |
[12] | WU L B, YUE S Y, SHI Z B, et al. Source forensics of inorganic and organic nitrogen using δ15N for tropospheric aerosols over Mt. Tai[J]. npj Climate and Atmospheric Science, 2021, 4(1): 8. |
[13] | HU W, WANG Z H, HUANG S, et al. Biological aerosol particles in polluted regions[J]. Current Pollution Reports, 2020, 6: 65-89. |
[14] | RUIZ-JIMENEZ J, OKULJAR M, SIETIÖ O M, et al. Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols-seasonal variations, particle size distribution, chemical and microbial relations[J]. Atmospheric Chemistry and Physics, 2021, 21(11): 8775-8790. |
[15] | HAAN D O D, CORRIGAN A L, SMITH K W, et al. Secondary organic aerosol-forming reactions of glyoxal with amino acids[J]. Environmental Science & Technology, 2009, 43(8): 2818-2824. |
[16] | MILNE P J, ZIKA R G. Amino acid nitrogen in atmospheric aerosols: occurrence, sources and photochemical modification[J]. Journal of Atmospheric Chemistry, 1993, 16: 361-398. |
[17] | MATOS J T V, DUARTE R M B O, DUARTE A C. Challenges in the identification and characterization of free amino acids and proteinaceous compounds in atmospheric aerosols: a critical review[J]. TrAC Trends in Analytical Chemistry, 2016, 75: 97-107. |
[18] | 赵青茈. 城市与高山大气溶胶中游离态氨基酸的物种组成与来源研究[D]. 天津: 天津大学, 2024. |
[19] | REN L, BAI H, YU X, et al. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China[J]. Atmospheric Research, 2018, 203: 28-35. |
[20] | HUANG X, KAO S J, LIN J, et al. Development and validation of a HPLC/FLD method combined with online derivatization for the simple and simultaneous determination of trace amino acids and alkyl amines in continental and marine aerosols[J]. PLOS One, 2018, 13(11): e0206488. |
[21] | MASHAYEKHY RAD F, ZURITA J, GILLES P, et al. Measurements of atmospheric proteinaceous aerosol in the Arctic using a selective UHPLC/ESI-MS/MS strategy[J]. Journal of The American Society for Mass Spectrometry, 2018, 30(1): 161-173. |
[22] |
MANDALAKIS M, APOSTOLAKI M, STEPHANOU E G. Trace analysis of free and combined amino acids in atmospheric aerosols by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(1): 143-150.
DOI PMID |
[23] | WEDYAN M A, PRESTON M R. The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis[J]. Atmospheric Environment, 2008, 42(37): 8698-8705. |
[24] |
GAO X, MA Q, ZHU H. Distribution, industrial applications, and enzymatic synthesis of D-amino acids[J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3341-3349.
DOI PMID |
[25] | VRANOVA V, ZAHRADNICKOVA H, JANOUS D, et al. The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps[J]. Plant and Soil, 2012, 354(1): 21-39. |
[26] | FUJII N, SAITO T. Homochirality and life[J]. The Chemical Record, 2004, 4(5): 267-278. |
[27] |
LI Y, LI X Y, WU L B, et al. Analysis of amino acid enantiomers in ambient aerosols: effects and removal of coexistent aerosol matrix[J]. Journal of Environmental Sciences, 2024, 137: 732-740.
DOI PMID |
[28] | ZHAO Q Z, WU L B, FU X L, et al. Molecular composition and sources of free amino acids in atmospheric aerosols from Mt. Tai and a nearby city[J]. Atmospheric Environment, 2024, 328: 120516. |
[29] | BARBARO E, MORABITO E, GREGORIS E, et al. Col margherita observatory: a background site in the eastern Italian Alps for investigating the chemical composition of atmospheric aerosols[J]. Atmospheric Environment, 2020, 221: 117071. |
[30] | ZHANG Z, TIAN J, XIAO H, et al. A reliable compound-specific nitrogen isotope analysis of amino acids by GC-C-IRMS following derivatisation into N-pivaloyl-iso-propyl (NPIP) esters for high-resolution food webs estimation[J]. Journal of Chromatography B, 2016, 1033: 382-389. |
[31] | WU L B, LIU X D, XU L Q, et al. Compound‐specific 15N analysis of amino acids: a tool to estimate the trophic position of tropical seabirds in the South China Sea[J]. Ecology and Evolution, 2018, 8(17): 8853-8864. |
[32] | YAMAGUCHI Y T, MCCARTHY M D. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids[J]. Geochimica et Cosmochimica Acta, 2018, 220: 329-347. |
[33] | PHILBEN M, BILLINGS S A, EDWARDS K A, et al. Amino acid δ15N indicates lack of N isotope fractionation during soil organic nitrogen decomposition[J]. Biogeochemistry, 2018, 138: 69-83. |
[34] | ZHU R, XIAO H Y, LV Z, et al. Nitrogen isotopic composition of free Gly in aerosols at a forest site[J]. Atmospheric Environment, 2020, 222: 117179. |
[35] | LIN X, XU Y, ZHU R G, et al. Proteinaceous matter in PM2.5 in suburban Guiyang, southwestern China: decreased importance in long‐range transport and atmospheric degradation[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(12): e2023JD038516. |
[36] | ZHANG Q, ANASTASIO C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from northern California[J]. Atmospheric Environment, 2003, 37(16): 2247-2258. |
[37] | BARBARO E, ZANGRANDO R, VECCHIATO M, et al. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5457-5469. |
[38] | MACE K A, DUCE R A, TINDALE N W. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11): 4338. |
[39] | SONG T, WANG S, ZHANG Y, et al. Proteins and amino acids in fine particulate matter in rural Guangzhou, Southern China: seasonal cycles, sources, and atmospheric processes[J]. Environmental Science & Technology, 2017, 51(12): 6773-6781. |
[40] | MANDALAKIS M, APOSTOLAKI M, TZIARAS T, et al. Free and combined amino acids in marine background atmospheric aerosols over the eastern Mediterranean[J]. Atmospheric Environment, 2011, 45(4): 1003-1009. |
[41] | DI FILIPPO P, POMATA D, RICCARDI C, et al. Free and combined amino acids in size-segregated atmospheric aerosol samples[J]. Atmospheric Environment, 2014, 98: 179-189. |
[42] |
朱济奇, 孙文文, 冯加良. 上海大气 PM2.5 中水溶性氨基酸的浓度及组成特征[J]. 生态环境学报, 2020, 29(6): 1173-1180.
DOI |
[43] |
SAMY S, ROBINSON J, HAYS M D. An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols[J]. Analytical and Bioanalytical Chemistry, 2011, 401: 3103-3113.
DOI PMID |
[44] | 石金辉, 范得国, 韩静, 等. 青岛大气气溶胶中氨基化合物的分布特征[J]. 环境科学, 2010, 31(11): 2547-2554. |
[45] | ZHU R G, XIAO H Y, LUO L, et al. Measurement report: hydrolyzed amino acids in fine and coarse atmospheric aerosol in Nanchang, China: concentrations, compositions, sources and possible bacterial degradation state[J]. Atmospheric Chemistry and Physics, 2021, 21(4): 2585-2600. |
[46] | SCALABRIN E, ZANGRANDO R, BARBARO E, et al. Amino acids in Arctic aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10453-10463. |
[47] | KANG H, XIE Z, HU Q. Ambient protein concentration in PM10 in Hefei, central China[J]. Atmospheric Environment, 2012, 54: 73-79. |
[48] | MATSUMOTO K, KIM S, HIRAI A. Origins of free and combined amino acids in the aerosols at an inland urban site in Japan[J]. Atmospheric Environment, 2021, 259: 118543. |
[49] | BAEK K M, PARK E H, KANG H, et al. Seasonal characteristics of atmospheric water-soluble organic nitrogen in PM2.5 in Seoul, Korea: source and atmospheric processes of free amino acids and aliphatic amines[J]. Science of The Total Environment, 2022, 811: 152335. |
[50] | YANG H, XU J, WU W S, et al. Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia[J]. Environmental Chemistry, 2004, 1(1): 13-17. |
[51] | MENETREZ M Y, FOARDE KK, ESCH R K, et al. An evaluation of indoor and outdoor biological particulate matter[J]. Atmospheric Environment 2009, 43(34): 5476-5483. |
[52] | STATON S J R, WOODWARD A, CASTILLO J A, et al. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research[J]. Ecological Indicators, 2015, 48: 389-395. |
[53] | HELIN A, SIETIÖ O M, HEINONSALO J, et al. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions[J]. Atmospheric Chemistry and Physics, 2017, 17(21): 13089-13101. |
[54] | 朱玉雯, 朱仁果, 方小珍, 等. 森林地区PM2.5中氨基酸的水平、 来源及转化[J]. 中国环境科学, 2021, 41(1): 81-90. |
[55] | KUZNETSOVA M, LEE C, ALLER J. Characterization of the proteinaceous matter in marine aerosols[J]. Marine Chemistry, 2005, 96(3/4): 359-377. |
[56] | MATSUMOTO K, UEMATSU M. Free amino acids in marine aerosols over the western North Pacific Ocean[J]. Atmospheric Environment, 2005, 39(11): 2163-2170. |
[57] | SAIJO S, TANOUE E. Chemical forms and dynamics of amino acid-containing particulate organic matter in Pacific surface waters[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(10): 1865-1884. |
[58] | TRIESCH N, VAN PINXTEREN M, ENGEL A, et al. Concerted measurements of free amino acids at the Cape Verde Islands: high enrichments in submicron sea spray aerosol particles and cloud droplets[J]. Atmospheric Chemistry and Physics, 2021, 21: 163-181. |
[59] |
FELTRACCO M, BARBARO E, KIRCHGEORG T, et al. Free and combined L- and D-amino acids in Arctic aerosol[J]. Chemosphere, 2019, 220: 412-421.
DOI PMID |
[60] | RENARD P, BRISSY M, ROSSI F, et al. Free amino acid quantification in cloud water at the Puy de Dôme station (France)[J]. Atmospheric Chemistry and Physics, 2022, 22(4): 2467-2486. |
[61] | XU Y, WU D, XIAO H, et al. Dissolved hydrolyzed amino acids in precipitation in suburban Guiyang, southwestern China: seasonal variations and potential atmospheric processes[J]. Atmospheric Environment, 2019, 211: 247-255. |
[62] | GAO S, XU B, ZHENG X, et al. Developing an analytical method for free amino acids in atmospheric precipitation using gas chromatography coupled with mass spectrometry[J]. Atmospheric Research, 2021, 256: 105579. |
[63] | SHI J, GAO H, QI J, et al. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D17303. |
[64] | DESPRÉS V R, HUFFMAN J, BURROWS S M, et al. Primary biological aerosol particles in the atmosphere: a review[J]. Tellus B, 2012, 64: 1-58. |
[65] | MOPPER K, ZIKA R G. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling[J]. Nature, 1987, 325(6101): 246-249. |
[66] | AXELROD K, SAMBUROVA V, KHLYSTOV A Y. Relative abundance of saccharides, free amino acids, and other compounds in specific pollen species for source profiling of atmospheric aerosol[J]. Science of The Total Environment, 2021, 799: 149254. |
[67] | ABE R Y. Protein amino acids as markers for biological sources in urban aerosols[J]. Environmental Chemistry Letters, 2016, 14: 155-161. |
[68] | CHAN M N, CHOI M Y, NG N L, et al. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species[J]. Environmental Science & Technology, 2005, 39(6): 1555-1562. |
[69] | 石金辉, 李瑞芃, 祁建华, 等. 青岛大气气溶胶中游离氨基化合物的浓度、 组成和来源[J]. 环境科学学报, 2012, 32(2): 377-385. |
[70] | VAN PINXTEREN M, ZEPPENFELD S, FOMBA K W, et al. Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation[J]. Atmospheric Chemistry and Physics, 2023, 23(11): 6571-6590. |
[71] | ZHU R G, XIAO H Y, WEN Z, et al. Oxidation of proteinaceous matter by ozone and nitrogen dioxide in PM2.5: reaction mechanisms and atmospheric implications[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD034741. |
[72] | ZHU R, XIAO H Y, ZHU Y, et al. Sources and transformation processes of proteinaceous matter and free amino acids in PM2.5[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(5): e2020JD032375. |
[73] | WEN Z, LI B, XIAO H Y, et al. Combined positive matrix factorization (PMF) and nitrogen isotope signature analysis to provide insights into the source contribution to aerosol free amino acids[J]. Atmospheric Environment, 2022, 268: 118799. |
[74] | SHIRAIWA M, SELZLE K, YANG H, et al. Multiphase chemical kinetics of the nitration of aerosolized protein by ozone and nitrogen dioxide[J]. Environmental Science & Technology, 2012, 46(12): 6672-6680. |
[75] | KAMPF C J, LIU F, REINMUTH-SELZLE K, et al. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone[J]. Environmental Science & Technology, 2015, 49(18): 10859-10866. |
[76] |
LIU F, LAKEY P S J, BERKEMEIER T, et al. Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide[J]. Faraday Discussions, 2017, 200: 413-427.
DOI PMID |
[77] | WU S, ZHU Q, LIU F, et al. Multiphase reactions of proteins in the air: oligomerization, nitration and degradation of bovine serum albumin upon ambient exposure[J]. Science of The Total Environment, 2024, 924: 171617. |
[78] |
LIU F, LAI S, TONG H, et al. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals[J]. Analytical and Bioanalytical Chemistry, 2017, 409(9): 2411-2420.
DOI PMID |
[79] | XU Y, DONG X N, XIAO H Y, et al. Proteinaceous matter and liquid water in fine aerosols in Nanchang, eastern China: seasonal variations, sources, and potential connections[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(15): e2022JD036589. |
[80] | XU Y, LIN X, SUN Q B, et al. Elaborating the atmospheric transformation of combined and free amino acids from the perspective of observational studies[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(16): e2024JD040730. |
[81] | WANG S, SONG T, SHIRAIWA M, et al. Occurrence of aerosol proteinaceous matter in urban Beijing: an investigation on composition, sources, and atmospheric processes during the “APEC Blue” period[J]. Environmental Science & Technology, 2019, 53(13): 7380-7390. |
[82] | LI X, ZHANG Y, SHI L, et al. Aerosolproteinaceous matter in coastal Okinawa, Japan: influence of long-range transport and photochemical degradation[J]. Environmental Science & Technology, 2022, 56(8): 5256-5265. |
[83] | JABER S, JOLY M, BRISSY M, et al. Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications[J]. Biogeosciences, 2021,18: 1067-1080. |
[84] | SUN J, ARIYA P. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review[J]. Atmospheric Environment, 2006, 40(5): 795-820. |
[85] | LI Y P, ZHANG H Y, LI A T, et al. High time-resolved variations of proteins in PM2.5 during haze pollution periods in Xi’an, China[J]. Environmental Pollution, 2022, 305: 119212. |
[86] | KRISTENSSON A, ROSENØRN T, BILDE M. Cloud droplet activation of amino acid aerosol particles[J]. The Journal of Physical Chemistry A, 2009, 114(1): 379-386. |
[87] |
GE P, LUO G, LUO Y, et al. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication[J]. Chemosphere, 2018, 210: 215-223.
DOI PMID |
[88] | CAO H, LIU Y R, HUANG T, et al. Contributions of alanine and serine to sulfuric acid-based homogeneous nucleation[J]. Atmospheric Environment, 2021, 246: 118139. |
[89] | ZHANG X, TAN S, CHEN X, et al. Computational chemistry of cluster: understanding the mechanism of atmospheric new particle formation at the molecular level[J]. Chemosphere, 2022, 308: 136109. |
[90] | WU L, WANG Z, CHANG T, et al. Morphological characteristics of amino acids in wet deposition of Danjiangkou Reservoir in China’s South-to-North Water Diversion Project[J]. Environmental Science and Pollution Research, 2022, 29(48): 73100-73114. |
[91] | XU Y, XIAO H, WU D, et al. Abiotic and biological degradation of atmospheric proteinaceous matter can contribute significantly to dissolved amino acids in wet deposition[J]. Environmental Science & Technology, 2020, 54(11): 6551-6561. |
[92] |
ESTILLORE A D, TRUEBLOOD J V, GRASSIAN V H. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases[J]. Chemical Science, 2016, 7(11): 6604-6616.
DOI PMID |
[1] | GONG Yaoqi, YUE Fujun, LIU Xin, GUO Tianli, WANG Haoyang, LI Siliang. Research progress of coupled hydrological and water environment models in nitrogen cycle of watershed system [J]. Earth Science Frontiers, 2025, 32(3): 183-195. |
[2] | ZHANG Yanli, RAN Haofan, ZENG Jianqiang, LU Yuting, PANG Weihua, GUO Hao, WANG Xinming. Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change [J]. Earth Science Frontiers, 2025, 32(3): 288-310. |
[3] | ZHU Renguo, XIAO Huayun. Sources and nitrogen isotope fractionation mechanisms of atmospheric amino acids [J]. Earth Science Frontiers, 2025, 32(3): 362-374. |
[4] | CHEN Xi, GAO Man, DONG Jianzhi, WANG Zhe. Challenges and research pathways for the evolution of water resources supply and demand in the Beijing-Tianjin-Hebei Region [J]. Earth Science Frontiers, 2025, 32(3): 436-444. |
[5] | SANG Liyuan, GUO Wei, ZHANG Jingwen, LIU Yixuan, ZHANG Tongkun, ZHANG Zhuqing, YUE Zhanpeng, LI Danyang, ZHANG Run, ZHANG Xu, TANG Weiping, LIU Zhanhang, DING Hu, LANG Yunchao, Liu Cong-Qiang. Current status, challenges, and future directions of research on hydrological processes, water environment, and water resources in the urban Earth’s critical zone [J]. Earth Science Frontiers, 2025, 32(3): 445-461. |
[6] | CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change [J]. Earth Science Frontiers, 2025, 32(3): 52-61. |
[7] | SUN Huanquan, GAO Nan’an, WU Chenbingjie, GUO Dianbin, FANG Jichao, ZHAO Lei, LIU Jian, ZHOU Zongying. Medium-deep geothermal exploration and development technology and typical applications [J]. Earth Science Frontiers, 2025, 32(2): 230-241. |
[8] | WU Yiping, WANG Jianjun, TAO Shizhen, WANG Qing, LEI Zhanxiang, LI Qian, ZHANG Ningning, WANG Xiaobo, YANG Yiqing. Research on helium charging and accumulation mechanism in Rukwa Rift Basin in Tanzania [J]. Earth Science Frontiers, 2025, 32(2): 261-276. |
[9] | WNAG Xueqiu, LI Longxue, WU Hui, WANG Wei. Super enrichment of critical elements: Implications for stratgic mineral resources [J]. Earth Science Frontiers, 2025, 32(1): 11-22. |
[10] | HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting [J]. Earth Science Frontiers, 2025, 32(1): 127-141. |
[11] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
[12] | LIU Demin, ZHANG Changsheng, LU Wanling, WEI Meihua, QI Yanya, LIU Fei, ZHAO Yue, JIANG Huai. Enrichment background and formation mechanism of middle- and deep-geothermal resources in the Fenwei Graben [J]. Earth Science Frontiers, 2025, 32(1): 367-379. |
[13] | LIU Qingqing, WANG Xueqiu, ZHANG Bimin, ZHOU Jian, WANG Wei, LIU Hanliang, LIU Dongsheng, ZHOU Yining, CHANG Chan. Characteristics of boron geochemical anomalies and prediction of boron resource potential in China [J]. Earth Science Frontiers, 2025, 32(1): 50-60. |
[14] | LIU Feng, WANG Guiling, JIANG Guangzheng, HU Shengbiao, ZHANG Wei, LIN Wenjing, LIU Jinhui, ZHANG Xinyong, QU Zewei, LIAO Chuanzhi. Recent advances in heat flow measurement and new understanding of terrestrial heat flow distribution in terrestrial areas of China [J]. Earth Science Frontiers, 2024, 31(6): 19-30. |
[15] | LONG Xiting, LI Shuheng, XIE Heping, SUN Licheng, GAO Tianyi, XIA Entong, LI Biao, WANG Jun, LI Cunbao, MO Zhengyu, DU Min. System design and performance analysis of a modular thermoelectric generator for low- and medium-temperature geothermal resource [J]. Earth Science Frontiers, 2024, 31(6): 215-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||