Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 391-401.DOI: 10.13745/j.esf.sf.2023.9.1
Previous Articles Next Articles
SHEN Luyin1,2(), PAN Renfang2, LÜ Haitao1, DUAN Taizhong3,*(
), HE Tingting4, LIU Yisheng1,2, ZHAO Lei3
Received:
2022-04-12
Revised:
2023-09-03
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
SHEN Luyin, PAN Renfang, LÜ Haitao, DUAN Taizhong, HE Tingting, LIU Yisheng, ZHAO Lei. Quantitative analysis of total accommodation space based on sedimentary simulation[J]. Earth Science Frontiers, 2024, 31(2): 391-401.
井名 | 观测数据 | 总可容空间提供量 | 总沉降速率 R/(m·ka-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
沉积厚度 | 水深 | 初始地形 | 全球海平面变化 | 总沉降量 | |||||||
H/m | Wt/m | W0/m | Lt/m | L0/m | S/m | ||||||
Unda | 280.7 | 6.7 | -161.5 | 0 | -40 | -85.9 | -1.62 | ||||
Clino | 521.1 | 7.6 | -402.6 | 0 | -40 | -86.1 | -1.62 | ||||
1005 | 415 | 352 | -631.2 | 0 | -40 | -95.8 | -1.81 | ||||
1007 | 302 | 650 | -760.8 | 0 | -40 | -151.2 | -2.85 |
Table1 Calculation of total subsidence
井名 | 观测数据 | 总可容空间提供量 | 总沉降速率 R/(m·ka-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
沉积厚度 | 水深 | 初始地形 | 全球海平面变化 | 总沉降量 | |||||||
H/m | Wt/m | W0/m | Lt/m | L0/m | S/m | ||||||
Unda | 280.7 | 6.7 | -161.5 | 0 | -40 | -85.9 | -1.62 | ||||
Clino | 521.1 | 7.6 | -402.6 | 0 | -40 | -86.1 | -1.62 | ||||
1005 | 415 | 352 | -631.2 | 0 | -40 | -95.8 | -1.81 | ||||
1007 | 302 | 650 | -760.8 | 0 | -40 | -151.2 | -2.85 |
井名 | 总可容空间/m | 观测资料 | 模拟结果 | 沉积厚度差异/m | 厚度误差/% | |||
---|---|---|---|---|---|---|---|---|
沉积厚度/m | 水深/m | 沉积厚度/m | 水深/m | |||||
Unda | 287.4 | 280.7 | 6.7 | 279.76 | 7.64 | 0.94 | 0.33 | |
Clino | 528.7 | 521.1 | 7.6 | 519.59 | 9.11 | 1.51 | 0.29 | |
1005 | 767 | 415 | 352 | 414.72 | 352.28 | 0.28 | 0.07 | |
1007 | 952 | 302 | 650 | 301.95 | 650.05 | 0.05 | 0.02 |
Table 2 Comparison between simulated thickness and actual thickness
井名 | 总可容空间/m | 观测资料 | 模拟结果 | 沉积厚度差异/m | 厚度误差/% | |||
---|---|---|---|---|---|---|---|---|
沉积厚度/m | 水深/m | 沉积厚度/m | 水深/m | |||||
Unda | 287.4 | 280.7 | 6.7 | 279.76 | 7.64 | 0.94 | 0.33 | |
Clino | 528.7 | 521.1 | 7.6 | 519.59 | 9.11 | 1.51 | 0.29 | |
1005 | 767 | 415 | 352 | 414.72 | 352.28 | 0.28 | 0.07 | |
1007 | 952 | 302 | 650 | 301.95 | 650.05 | 0.05 | 0.02 |
[1] | POMAR L, HAQ B U. Decoding depositional sequences in carbonate systems: concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225. |
[2] | 成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25. |
[3] | AINSWORTH R B, MCARTHUR J B, LANG S C, et al. Quantitative sequence stratigraphy[J]. AAPG Bulletin, 2018, 102(10): 1913-1939. |
[4] | 张昌民, 尹艳树, 尹太举, 等. 基准面旋回定量表征的工作框架[J]. 石油天然气学报, 2007, 29(4): 8-14, 163. |
[5] | 邓宏文, 王洪亮, 李熙喆. 层序地层地层基准面的识别、对比技术及应用[J]. 石油与天然气地质, 1996, 17(3): 177-184. |
[6] | LIANG J T, WANG H L, BLUM M J, et al. Demarcation and correlation of stratigraphic sequences using wavelet and Hilbert-Huang transforms: a case study from Niger Delta Basin[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106329. |
[7] | MUTO T, STEEL R J, BURGESS P M. Contributions to sequence stratigraphy from analogue and numerical experiments[J]. Journal of the Geological Society, 2016, 173(5): 837-844. |
[8] | BORGOMANO J, LANTEAUME C, LÉONIDE P, et al. Quantitative carbonate sequence stratigraphy: insights from stratigraphic forward models[J]. AAPG Bulletin, 2020, 104(5): 1115-1142. |
[9] | MARTINCHIVELET J. Quantitative analysis of accommodation patterns in carbonate platforms: an example from the mid-Cretaceous of SE Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 200(1/2/3/4): 83-105. |
[10] | DUAN T Z. Similarity measure of sedimentary successions and its application in inverse stratigraphic modeling[J]. Petroleum Science, 2017, 14(3): 484-492. |
[11] | JERVEY M T. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression[M]// WILGUSC, HASTINGSB S, KENDALLC G, et al. Sea-level changes:an integrated approach. Tulsa: SEPM, 1988: 47-69. |
[12] | POMAR L, KENDALL C G St. C. Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology[M]// LUKASIKJ, SIMOJ A. Controls on carbonate platform and reef development. Tulsa: SEPM, 2008: 187-216. |
[13] | 王亚青, 董春梅, 邢焕清. 可容空间的研究进展[J]. 海洋地质动态, 2004, 20(10): 32-35. |
[14] | CROSS T. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, western interior, USA[M]// WILGUSC K, HASTINGSB S, POSAMENTIERH. Sea-level changes-An integrated approach, Tulsa: SEPM, 1988, 42: 371-380. |
[15] | 杨树锋, 贾承造, 陈汉林, 等. 沉积盆地构造核心理论和关键技术方法: 前沿与发展方向[J]. 地学前缘, 2022, 29(6): 10-23. |
[16] | 仝长亮, 朱钰, 吴祥柏, 等. 基于数值模拟的琼州海峡东口推移质输运量估算[J]. 地学前缘, 2023, 30(5): 553-566. |
[17] | BOSSCHER H, SCHLAGER W. Accumulation rates of carbonate platforms[J]. The Journal of Geology, 1993, 101(3): 345-355. |
[18] | 彭光荣, 杜晓东, 姜素华, 等. 基于古地貌和源-汇特征分析的烃源岩评价: 以珠江口盆地阳江凹陷为例[J]. 地学前缘, 2022, 29(5): 188-202. |
[19] | 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66. |
[20] | 石巨业, 金之钧, 刘全有, 等. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘, 2023, 30(4): 142-151. |
[21] | 沈禄银, 潘仁芳, 段太忠, 等. 基于地层沉积反演的深时海平面变化曲线恢复方法[J]. 地学前缘, 2023, 30(2): 109-121. |
[22] | 胡钊彬, 尉建功, 谢志远, 等. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24. |
[23] | HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167. |
[24] | HAQ B U, SCHUTTER S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. |
[25] | HANDFORD C R, LOUCKS R G. Carbonate depositional sequences and systems tracts: responses of carbonate platforms to relative sea-level changes[M]// LOUCKSR G, SARGJ F. Carbonate sequence stratigraphy. Recent developments and applocations. Tulsa: AAPG, 1993, 57: 3-41. |
[26] | PATERSON R J, WHITAKER F F, JONES G D, et al. Accommodation and sedimentary architecture of isolated icehouse carbonate platforms: insights from forward modeling with CARB3D+[J]. Journal of Sedimentary Research, 2006, 76(10): 1162-1182. |
[27] | 段太忠, 王光付, 廉培庆, 等. 油气藏定量地质建模方法与应用[M]. 北京: 石油工业出版社, 2019: 156-198. |
[1] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
[2] | YUAN Yuxuan, LI Yifan, FAN Tailiang, DU Wei, CHEN Gege, ZHANG Tan, KUANG Mingzhi, LIU Wangwei. High-resolution sequence-stratigraphic characteristics and filling evolution model of Lower Cambrian fine-grained sedimentary rocks in southwestern Sichuan [J]. Earth Science Frontiers, 2023, 30(6): 162-180. |
[3] | SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks [J]. Earth Science Frontiers, 2023, 30(4): 142-151. |
[4] | KUANG Mingzhi, LI Yifan, FAN Tailiang, ZHANG Tan, LIU Wangwei, LIU Nan. Application of high-precision sequence stratigraphy in marine fine-grained sedimentary rocks: A case study of the Doushantuo Formation in northern Sichuan [J]. Earth Science Frontiers, 2023, 30(4): 164-181. |
[5] | HE Bizhu, JIAO Cunli, LIU Ruohan, CAO Zicheng, CAI Zhihui, LAN Mingjie, YUN Xiaorui, ZHU Ding, JIANG Zhongzheng, YANG Yujie, LI Zhenyu. The paleotectonic and paleogeography reconstructions of the Tarim Basin in the Neoproterozoic and prediction of favorable deep source rock areas [J]. Earth Science Frontiers, 2023, 30(4): 19-42. |
[6] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[7] | YANG Kunkun, LI Haiyan, ZHAO Hanqing, CHU Runjian, LIU Guanghong, WU Huaichun, ZHANG Shihong. Cyclostratigraphic study of the Neoproterozoic Browne-Hussar formations in western Australia [J]. Earth Science Frontiers, 2023, 30(3): 441-451. |
[8] | SHEN Luyin, PAN Renfang, DUAN Taizhong, LIU Yanfeng, LI Meng, LIAN Peiqing, HUANG Yuan, ZHANG Demin. Deep-time sea-level change curve recovery: A recovery method based on stratigraphic inverse modeling [J]. Earth Science Frontiers, 2023, 30(2): 109-121. |
[9] | HAN Haiying, GUO Rui, WANG Jun, QIN Guosheng, SUN Xiaowei, YU Yichang, SU Haiyang, GAO Yang. Sequence stratigraphic framework and sedimentary evolution of the Cretaceous in southern Iraq [J]. Earth Science Frontiers, 2023, 30(2): 122-138. |
[10] | LI Yongjun, LI Hai, NING Wentao, XU Qian, REN Pengfei, TAO Xiaoyang. Redefining the Heishantou Formation and defining the Aketamu Formation in West Junggar, Xinjiang [J]. Earth Science Frontiers, 2021, 28(2): 348-361. |
[11] | CHEN Huanqing, ZHU Xiaomin, ZHANG Gongcheng, ZHANG Yaxiong, ZHANG Qin, LIU Changli. Classification and combination model characteristics of pathway system in marine faulted basin: Taking the Paleogene Lingshui Formation, Qiongdongnan Basin as an example [J]. Earth Science Frontiers, 2021, 28(1): 282-294. |
[12] | DONG Yanlei, ZHU Xiaomin, WEI Minpeng, LI Shunli, ZHAO Ruixing, JIA Tianpeng, GUAN Weifeng, ZHANG Yaxiong. Jurassic sequence framework and sedimentary system distribution in the Wudun Sag, Dunhuang Basin [J]. Earth Science Frontiers, 2021, 28(1): 177-189. |
[13] | ZHANG Yina, CAI Wenjie, YANG Songling, ZHANG Ke, CHEN Jingyang. Sedimentary characteristics of the Jurassic shelf-edge delta and oil and gas exploration in the Papuan Basin [J]. Earth Science Frontiers, 2021, 28(1): 167-176. |
[14] | RAN Huaijiang, FAN Leyuan, KONG Qingdong, XU Xiaojing. Sedimentary sequence and prediction of favorable stratigraphic traps in the western slope zone of the southern-central Muglad Basin, Sudan [J]. Earth Science Frontiers, 2021, 28(1): 131-140. |
[15] | LIU Zhanguo,GONG Qingshun,ZHU Chao,WANG Peng,LI Jiyong,WU Jin, DING Xuecheng,PANG Xu. Sedimentary sequence and its controlling effect on hydrocarbon enrichment in Qie12 block of Qaidam Basin [J]. Earth Science Frontiers, 2019, 26(4): 238-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||