Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 183-195.DOI: 10.13745/j.esf.sf.2023.11.51
Previous Articles Next Articles
LIU He1(), SONG Shuxian2, SUN Mei1, LI Shuangshuang1, YU Xiaojing1,*(
), DAI Jiulan1,*(
)
Received:
2023-09-08
Revised:
2023-11-23
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LIU He, SONG Shuxian, SUN Mei, LI Shuangshuang, YU Xiaojing, DAI Jiulan. Microplastics in soils and plants: Current research status and progress on detection methods[J]. Earth Science Frontiers, 2024, 31(2): 183-195.
MPs类型 | 浮选液 | 分离效果 | 参考文献 |
---|---|---|---|
PP,0.89~0.93 g/cm3 PE,0.91~0.94 g/cm3 PS,1.01~1.06 g/cm3 ABS,1.04~1.08 g/cm3 PC,1.18~1.22 g/cm3 PVC,1.16~1.35 g/cm3 PET,1.38~1.41 g/cm3 | 1. H2O(1.00 g/cm3) 2. NaCl(1.17 g/cm3) 3. NaBr(1.46 g/cm3) 4. ZnCl2(1.70 g/cm3) | 总提取率: H2O:47.36% NaCl:89.93% NaBr:96.35% ZnCl2:95.87% 不同浮选液对低密度MPs呈现 良好的提取效果,而高密度 MPs需要选择密度更高的 浮选液进行提取 | [ |
PE | 饱和NaCl | 经过后续超声处理后, 最终MPs回收率可达92.9% | [ |
PS、PVC、PE和PET | 饱和NaCl+饱和NaI 不同比例混合 | 总提取率: 当两者比例为1∶1时, 提取效果超过90%, 之后略有升高但逐渐趋于稳定 | [ |
PE、PP、PS、PET、尼龙6 | 82% NaI+0.5%聚乙 烯吡咯烷酮(PVP) | 加入PVP可将不同粒径,特别 是小尺寸MPs的提取率从 60%~70%提高到90%以上 | [ |
PE、PP、PET等多种混合 | CaCl2(1.5 g/cm3) | 提取率达93%~98% | [ |
Table 1 Effect of common density flotation solution
MPs类型 | 浮选液 | 分离效果 | 参考文献 |
---|---|---|---|
PP,0.89~0.93 g/cm3 PE,0.91~0.94 g/cm3 PS,1.01~1.06 g/cm3 ABS,1.04~1.08 g/cm3 PC,1.18~1.22 g/cm3 PVC,1.16~1.35 g/cm3 PET,1.38~1.41 g/cm3 | 1. H2O(1.00 g/cm3) 2. NaCl(1.17 g/cm3) 3. NaBr(1.46 g/cm3) 4. ZnCl2(1.70 g/cm3) | 总提取率: H2O:47.36% NaCl:89.93% NaBr:96.35% ZnCl2:95.87% 不同浮选液对低密度MPs呈现 良好的提取效果,而高密度 MPs需要选择密度更高的 浮选液进行提取 | [ |
PE | 饱和NaCl | 经过后续超声处理后, 最终MPs回收率可达92.9% | [ |
PS、PVC、PE和PET | 饱和NaCl+饱和NaI 不同比例混合 | 总提取率: 当两者比例为1∶1时, 提取效果超过90%, 之后略有升高但逐渐趋于稳定 | [ |
PE、PP、PS、PET、尼龙6 | 82% NaI+0.5%聚乙 烯吡咯烷酮(PVP) | 加入PVP可将不同粒径,特别 是小尺寸MPs的提取率从 60%~70%提高到90%以上 | [ |
PE、PP、PET等多种混合 | CaCl2(1.5 g/cm3) | 提取率达93%~98% | [ |
MPs类型 | 消解液 | 消解效果 | 参考文献 |
---|---|---|---|
PE | 1. 30%H2O2 2. 5mol/L NaOH | H2O2:圆形MPs表面 有较少的土壤颗粒,回收率89.1%; NaOH:表面附着一部分土壤颗粒、 有机质等杂质,回收率90.7% | [ |
PVC、PET、PP等 | 1. 30%H2O2 2. 10%KOH 3. Fenton | 30%H2O2普适性较大,Fenton适合 在低有机质土壤使用,KOH效果一般 | [ |
PS、PE、PET等 | 混合溶液:15 mL HCl+5 mL HNO3+3 mL HF | 可将0.1 g土壤完全消解 并有效提取出多种微塑料 | [ |
PE、PP、PET等多种混合 | HNO3 | MPs回收率为93%~98% | [ |
Table 2 The effect of the commonly used digesting solution
MPs类型 | 消解液 | 消解效果 | 参考文献 |
---|---|---|---|
PE | 1. 30%H2O2 2. 5mol/L NaOH | H2O2:圆形MPs表面 有较少的土壤颗粒,回收率89.1%; NaOH:表面附着一部分土壤颗粒、 有机质等杂质,回收率90.7% | [ |
PVC、PET、PP等 | 1. 30%H2O2 2. 10%KOH 3. Fenton | 30%H2O2普适性较大,Fenton适合 在低有机质土壤使用,KOH效果一般 | [ |
PS、PE、PET等 | 混合溶液:15 mL HCl+5 mL HNO3+3 mL HF | 可将0.1 g土壤完全消解 并有效提取出多种微塑料 | [ |
PE、PP、PET等多种混合 | HNO3 | MPs回收率为93%~98% | [ |
检测技术 | 方法仪器 | 所得信息 | 优缺点 |
---|---|---|---|
目检法 | 肉眼观察 | 尺寸、丰度 | 可识别1~5 mm大型MPs,对于尺寸微小塑料识别精度低 |
常规显微镜 | 尺寸、丰度 | 可识别尺寸>100 μm的MPs,经济、简单,但精度低,需辅以染色技术 | |
电子显微镜 | 尺寸、丰度 | 可识别尺寸<100 μm的MPs,检测精度更高,但耗时耗力,测样量少 | |
光谱法 | Raman | 尺寸、丰度、成分 | 适合识别尺寸>1 μm的MPs,成像快速、简便,分辨率高;不适用于检测含有荧光的样品,受有机质影响较大,需要提前对样品进行消解 |
FTIR | 尺寸、丰度、成分 | 适合识别尺寸>20 μm的MPs,分辨率高、扫描快、精确度高;对样品的颜色、尺寸和其中水分的干扰比较敏感,样品需要提前消解 | |
TOF-SIMS | 尺寸、成分、丰度 | 质谱多组分同时检测、样品前处理简单、抗干扰能力强 | |
LDIR | 尺寸、丰度、成分 | 适合尺寸>20 μm MPs的检测,准确度高,节省人力物力,有广阔的发展前景;光谱范围窄(975~1 800 cm-1) | |
THz | 预测MPs浓度 | 穿透性高、能量低、极性分子吸收性强、应用范围广;样品需要保持干燥,检测上下限待确定 | |
质谱法 | Py-GC/MS | 成分、质量 | 灵敏性高,可定性定量多种聚合物和添加剂;会受到操作温度和进样量的限制,对MPs具有破坏性 |
TED-GC/MS | 成分、质量 | 处理时间相对较短,处理样品量相对较大,但容易受到添加剂、有机物等的影响 | |
TGA-DSC | 成分、质量 | 适合含结晶结构的聚合物(如PS) | |
ICP | 尺寸、丰度、成分、质量浓度 | 适合检测尺寸为1~10 μm的MPs,适用于个人护理产品和食品包装材料释放的MPs的筛查 |
Table 3 Summary of soil and plant MPs detection techniques
检测技术 | 方法仪器 | 所得信息 | 优缺点 |
---|---|---|---|
目检法 | 肉眼观察 | 尺寸、丰度 | 可识别1~5 mm大型MPs,对于尺寸微小塑料识别精度低 |
常规显微镜 | 尺寸、丰度 | 可识别尺寸>100 μm的MPs,经济、简单,但精度低,需辅以染色技术 | |
电子显微镜 | 尺寸、丰度 | 可识别尺寸<100 μm的MPs,检测精度更高,但耗时耗力,测样量少 | |
光谱法 | Raman | 尺寸、丰度、成分 | 适合识别尺寸>1 μm的MPs,成像快速、简便,分辨率高;不适用于检测含有荧光的样品,受有机质影响较大,需要提前对样品进行消解 |
FTIR | 尺寸、丰度、成分 | 适合识别尺寸>20 μm的MPs,分辨率高、扫描快、精确度高;对样品的颜色、尺寸和其中水分的干扰比较敏感,样品需要提前消解 | |
TOF-SIMS | 尺寸、成分、丰度 | 质谱多组分同时检测、样品前处理简单、抗干扰能力强 | |
LDIR | 尺寸、丰度、成分 | 适合尺寸>20 μm MPs的检测,准确度高,节省人力物力,有广阔的发展前景;光谱范围窄(975~1 800 cm-1) | |
THz | 预测MPs浓度 | 穿透性高、能量低、极性分子吸收性强、应用范围广;样品需要保持干燥,检测上下限待确定 | |
质谱法 | Py-GC/MS | 成分、质量 | 灵敏性高,可定性定量多种聚合物和添加剂;会受到操作温度和进样量的限制,对MPs具有破坏性 |
TED-GC/MS | 成分、质量 | 处理时间相对较短,处理样品量相对较大,但容易受到添加剂、有机物等的影响 | |
TGA-DSC | 成分、质量 | 适合含结晶结构的聚合物(如PS) | |
ICP | 尺寸、丰度、成分、质量浓度 | 适合检测尺寸为1~10 μm的MPs,适用于个人护理产品和食品包装材料释放的MPs的筛查 |
[1] | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
[2] | ZHAO J M, RAN W, TENG J, et al. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China[J]. Science of the Total Environment, 2018, 640: 637-645. |
[3] | LI B W, LIANG W, LIU Q X, et al. Fish ingest microplastics unintentionally[J]. Environmental Science and Technology, 2021, 55(15): 10471-10479. |
[4] | CHIA R W, LEE J Y, KIM H, et al. Microplastic pollution in soil and groundwater: a review[J]. Environmental Chemistry Letters, 2021, 19(6): 4211-4224. |
[5] | LI C J, GAO Y, HE S, et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry[J]. Environmental Science and Technology Letters, 2021, 8(8): 633-638. |
[6] | LESLIE H A, VAN VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199. |
[7] | 王金花, 李冰, 侯宇晴, 等. 农田土壤中微塑料的赋存、迁移及生态效应研究进展[J]. 农业环境科学学报, 2023, 42(5): 951-965, 946. |
[8] | HUANG B, SUN L Y, LIU M R, et al. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China[J]. Environmental Science and Pollution Research, 2021, 28(2): 1675-1688. |
[9] | DING L, ZHANG S Y, WANG X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 2020, 720: 137525. |
[10] | FENG S S, LU H W, TIAN P P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739: 140087. |
[11] | DAN Y B, ZHANG W L, XUE R M, et al. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis[J]. Environmental Science and Technology, 2015, 49(5): 3007-3014. |
[12] | QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645: 1048-1056. |
[13] | SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9): 755-760. |
[14] | ARTHUR C, BAKER J, BAMFORD H. Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris[C]. Washington: NOAA Marine Debris Division, 2009. |
[15] | HOOGENBOOM L A P. Presence of microplastics and nanoplastics in food, with particular focus on seafood[J]. EFSA Journal, 2016, 14(6): e04501. |
[16] | ZHOU Q, ZHANG H B, FU C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea[J]. Geoderma, 2018, 322: 201-208. |
[17] | HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. |
[18] | AL-JAIBACHI R, CUTHBERT R N, CALLAGHAN A. Examining effects of ontogenic microplastic transference on Culex mosquito mortality and adult weight[J]. Science of the Total Environment, 2019, 651: 871-876. |
[19] | YU M, VAN DER PLOEG M, LWANGA E H, et al. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows[J]. Environmental Chemistry, 2019, 16(1): 31. |
[20] | ZHU D, BI Q F, XIANG Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154. |
[21] | RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8: 1805. |
[22] | RAMOS L, BERENSTEIN G, HUGHES E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523: 74-81. |
[23] | LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science: Nano, 2018, 5(8): 2009-2020. |
[24] | ZHOU C Q, LU C H, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412. |
[25] | 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928-934. |
[26] | ZHU J H, WANG J, CHEN R N, et al. Cellular process of polystyrene nanoparticles entry into wheat roots[J]. Environmental Science and Technology, 2022, 56(10): 6436-6444. |
[27] | LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. |
[28] | BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics detected in sheep faeces and soil: a case study from the intensive vegetable farming in Southeast Spain[J]. Science of the Total Environment, 2021, 755(Pt 1): 142653. |
[29] | LWANGA E H, VEGA J M, QUEJ V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1): 14071. |
[30] | CHAE Y, AN Y J. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfereffects via vascular plants[J]. Environmental Science: Nano, 2020, 7(3): 975-983. |
[31] | SHRUTI V C, KUTRALAM-MUNIASAMY G. Bioplastics: missing link in the era of microplastics[J]. Science of the Total Environment, 2019, 697: 134139. |
[32] | DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science and Technology, 2019, 53(10): 6044-6052. |
[33] | WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654: 576-582. |
[34] | GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149: 170-177. |
[35] | LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385: 121620. |
[36] | IBRAHIM Y S, TUAN ANUAR S, AZMI A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open, 2021, 5(1): 116-121. |
[37] | SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool: a prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. |
[38] | DE-LA-TORRE G E. Microplastics: an emerging threat to food security and human health[J]. Journal of Food Science and Technology, 2020, 57(5): 1601-1608. |
[39] | ZURI G, KARANASIOU A, LACORTE S. Human biomonitoring of microplastics and health implications: a review[J]. Environmental Research, 2023, 237(Pt 1): 116966. |
[40] | YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: a review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780: 146546. |
[41] | DIOSES-SALINAS D C, PIZARRO-ORTEGA C I, DE-LA-TORRE G E. A methodological approach of the current literature on microplastic contamination in terrestrial environments: current knowledge and baseline considerations[J]. Science of the Total Environment, 2020, 730: 139164. |
[42] | HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science and Technology, 2012, 46(6): 3060-3075. |
[43] | ZHANG S L, YANG X M, GERTSEN H, et al. A simple method for the extraction and identification of light density microplastics from soil[J]. Science of the Total Environment, 2018, 616: 1056-1065. |
[44] | 左振江, 王菊, 王艳辉, 等. 基于密度浮选和油提取的土壤微塑料分离方法研究[J]. 中国环境科学, 2023, 43(11): 1-7. |
[45] | 白润昊, 崔吉晓, 范瑞琪, 等. 农田土壤地膜源微塑料分离检测方法优化[J]. 中国环境科学, 2023, 43(5): 2404-2412. |
[46] | 林婧, 李振国, 余光辉, 等. 密度分离法提取土壤中微塑料的优化[J]. 中国环境科学, 2022, 42(7): 3285-3294. |
[47] | KATSUMI N, NAGAO S, OKOCHI H. Addition of polyvinyl pyrrolidone during density separation with sodium iodide solution improves recovery rate of small microplastics (20-150 μm) from soils and sediments[J]. Chemosphere, 2022, 307(Pt 1): 135730. |
[48] | SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils[J]. Environmental Science and Technology, 2018, 52(6): 3591-3598. |
[49] | IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments[J]. Limnology and Oceanography: Methods, 2012, 10(7): 524-537. |
[50] | ZHANG Y S, WANG Q, YALIKUN N, et al. A comprehensive review of separation technologies for waste plastics in urban mine[J]. Resources, Conservation and Recycling, 2023, 197: 107087. |
[51] | FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science and Technology, 2016, 50(11): 5774-5780. |
[52] | FELSING S, KOCHLEUS C, BUCHINGER S, et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior[J]. Environmental Pollution, 2018, 234: 20-28. |
[53] | STUART J F F R, EULYN P, REZA K H, et al. Rapid extraction of high- and low-density microplastics from soil using high-gradient magnetic separation[J]. Science of the Total Environment, 2022, 831: 154912. |
[54] | RONG S S, CHENG X Y, CHEN Z N, et al. Detection technology and ecological effects of microplastics in soil[J]. Scientia Sinica Chimica, 2021, 51(9): 1217-1229. |
[55] | SCOPETANI C, CHELAZZI D, MIKOLA J, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples[J]. Science of the Total Environment, 2020, 733: 139338. |
[56] | CRICHTON E M, NOËL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9(9): 1419-1428. |
[57] | MANI T, FREHLAND S, KALBERER A, et al. Using castor oil to separate microplastics from four different environmental matrices[J]. Analytical Methods, 2019, 11(13): 1788-1794. |
[58] | LARES M, NCIBI M C, SILLANPÄÄ M, et al. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples[J]. Environmental Science and Pollution Research International, 2019, 26(12): 12109-12122. |
[59] | RADFORD F, ZAPATA-RESTREPO L M, HORTON A A, et al. Developing a systematic method for extraction of microplastics in soils[J]. Analytical Methods, 2021, 13(14): 1695-1705. |
[60] | 何欢, 殷婷, 黄斌, 等. 微波消解法提取定量复杂土壤介质中微塑料的方法[J]. 土木与环境工程学报(中英文), 2023, 45(3): 134-144. |
[61] | HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices[J]. Environmental Science and Technology, 2018, 52(13): 7409-7417. |
[62] | DUAN J H, HAN J, ZHOU H C, et al. Development of a digestion method for determining microplastic pollution in vegetal-rich clayey mangrove sediments[J]. Science of the Total Environment, 2020, 707: 136030. |
[63] | 凌小芳, 李铭, 吴宇. 环境中微塑料的分离及检测技术研究进展[J]. 四川化工, 2020, 23(5): 15-18. |
[64] | DONG H K, WANG X P, NIU X R, et al. Overview of analytical methods for the determination of microplastics: current status and trends[J]. Trends in Analytical Chemistry, 2023, 167: 117261. |
[65] | SHIM W J, HONG S H, EO S E. Identification methods in microplastic analysis: a review[J]. Analytical Methods, 2017, 9(9): 1384-1391. |
[66] | MÖLLER J N, LÖDER M G J, LAFORSCH C. Finding microplastics in soils: a review of analytical methods[J]. Environmental Science and Technology, 2020, 54(4): 2078-2090. |
[67] | MBACHU O, JENKINS G, KAPARAJU P, et al. The rise of artificial soil carbon inputs: reviewing microplastic pollution effects in the soil environment[J]. Science of the Total Environment, 2021, 780: 146569. |
[68] | 姜晓旭, 封雪, 周笑白, 等. 土壤中微塑料污染现状与检测技术研究进展[J]. 环境化学, 2023, 42(1): 163-175. |
[69] | 牟诗怡, 杨美慧, 陈钦清, 等. 太赫兹光谱技术对土壤污染物检测分析的研究[J]. 实验技术与管理, 2021, 38(4): 89-93. |
[70] | 查旭琼, 王娟, 郑阳, 等. 土壤微塑料的检测方法研究进展[J]. 山东化工, 2021, 50(13): 56-58. |
[71] | 杨海龙, 刘楠, 白保勋, 等. 农田土壤微塑料来源、分离及检测研究进展[J]. 河南化工, 2022, 39(12): 1-4. |
[72] | FISCHER M, SCHOLZ-BÖTTCHER B M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry[J]. Environmental Science and Technology, 2017, 51(9): 5052-5060. |
[73] | DÜMICHEN E, BARTHEL A K, BRAUN U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85: 451-457. |
[74] | DU C, WU J, GONG J, et al. ToF-SIMS characterization of microplastics in soils[J]. Surface and Interface Analysis, 2020, 52(5): 293-300. |
[75] | FENG J X, ZHAO H S, GONG X Y, et al. In situ identification and spatial mapping of microplastic standards in paramecia by secondary-ion mass spectrometry imaging[J]. Analytical Chemistry, 2021, 93(13): 5521-5528. |
[76] | BOLEA-FERNANDEZ E, RUA-IBARZ A, VELIMIROVIC M, et al. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(3): 455-460. |
[77] | JIA W Q, KARAPETROVA A, ZHANG M J, et al. Automated identification and quantification of invisible microplastics in agricultural soils[J]. Science of the Total Environment, 2022, 844: 156853. |
[78] | LI Y H, YAO J J, NIE P C, et al. An effective method for the rapid detection of microplastics in soil[J]. Chemosphere, 2021, 276: 128696. |
[79] | PAUL A, WANDER L, BECKER R, et al. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil[J]. Environmental Science and Pollution Research International, 2019, 26(8): 7364-7374. |
[80] | CORRADINI F, BARTHOLOMEUS H, HUERTA LWANGA E, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650: 922-932. |
[81] | SHAN J J, ZHAO J B, LIU L F, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238: 121-129. |
[82] | XU L J, CHEN Y J, FENG A, et al. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology[J]. Environmental Research, 2023, 232: 116389. |
[83] | LIU Y Y, GUO R, ZHANG S W, et al. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment[J]. Journal of Hazardous Materials, 2022, 421: 126700. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | SUN Caiyun, ZHENG Bingqing, LI Jun, FU Hongming, SUN Rongqing, LIU Honghao, LIAO Zuying, JIANG Hongsheng, WU Zhenbin, XIA Shibin, WANG Pei. Study on the effect of submerged plants on the stability of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 430-439. |
[3] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[4] | ZHANG Shunyao, SHI Zeming, YANG Zhibin, ZHOU Yalong, ZHANG Fugui, PENG Min. Advances and trends on soil methane emission in permafrost region [J]. Earth Science Frontiers, 2024, 31(4): 354-365. |
[5] | YANG Zheng, PENG Min, ZHAO Chuandong, YANG Ke, LIU Fei, LI Kuo, ZHOU Yalong, TANG Shiqi, MA Honghong, ZHANG Qing, CHENG Hangxin. The study of geochemical background and baseline for 54 chemical indicators in Chinese soil [J]. Earth Science Frontiers, 2024, 31(4): 380-402. |
[6] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[7] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[8] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[9] | DING Changfeng, ZHOU Zhigao, WANG Yurong, ZHANG Taolin, WANG Xingxiang. Environmental criteria for cadmium in soils based on ecological safety considerations in China [J]. Earth Science Frontiers, 2024, 31(2): 130-136. |
[10] | ZHANG Jingyuan, WANG Xuedong, LIANG Lichuan, DUAN Guilan. Derivation of ecotoxicity thresholds for Co in soils in China [J]. Earth Science Frontiers, 2024, 31(2): 137-146. |
[11] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[12] | LIU Yongbing, SU Junjie, GUO Wei, WANG Yingnan, YIN Yaqiu. Comparative study on soil remediation of slope-alluvial contaminated arable land in granite areas, northern Hebei Province [J]. Earth Science Frontiers, 2024, 31(2): 196-203. |
[13] | DING Xiang, YUAN Bei, DU Ping, LIU Hupeng, ZHANG Yunhui, CHEN Juan. Heavy metal accumulation in soils of a typical mining community: Driving factors and probabilistic health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 31-41. |
[14] | LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales [J]. Earth Science Frontiers, 2024, 31(2): 42-53. |
[15] | HAO Mengqiuyue, LIU Daqing, YAN Zhenfei, FENG Chenglian. Short chain chlorinated paraffins in soil: Environmental safety criteria based on ecological risks [J]. Earth Science Frontiers, 2024, 31(2): 54-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||