Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 244-254.DOI: 10.13745/j.esf.sf.2023.5.14
Previous Articles Next Articles
HE Lanfang1(), LI Liang1, SHEN Ping1, WANG Sihao1, LI Zhiyuan1, ZHOU Nannan1, CHEN Rujun2, QIN Kezhang1
Received:
2022-12-04
Revised:
2023-02-10
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
HE Lanfang, LI Liang, SHEN Ping, WANG Sihao, LI Zhiyuan, ZHOU Nannan, CHEN Rujun, QIN Kezhang. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay[J]. Earth Science Frontiers, 2023, 30(5): 244-254.
数据来源 | 各类地球物理探测方法的使用情况 | ||||
---|---|---|---|---|---|
重力 | 磁法 | 遥感 | 电法 | 放射性 | |
GreenPeg | ○ | ○ | |||
芬兰 | ○ | ○ | ○ | ○ | |
津巴布韦 | ○ | ○ | |||
莫桑比克 | ○ | ○ | |||
尼日利亚 | ○ | ○ | ○ | ○ | |
阿富汗 | ○ | ○ | |||
印度 | ○(微重力) | ||||
巴西 | ○(雷达) | ||||
美国 | ○ | ○ | ○ | ○ | |
中国 | ○ | ○ | ○ | ○ | ○ |
Table 1 Geophysical approaches typically used for pegmatite exploration in selected countries
数据来源 | 各类地球物理探测方法的使用情况 | ||||
---|---|---|---|---|---|
重力 | 磁法 | 遥感 | 电法 | 放射性 | |
GreenPeg | ○ | ○ | |||
芬兰 | ○ | ○ | ○ | ○ | |
津巴布韦 | ○ | ○ | |||
莫桑比克 | ○ | ○ | |||
尼日利亚 | ○ | ○ | ○ | ○ | |
阿富汗 | ○ | ○ | |||
印度 | ○(微重力) | ||||
巴西 | ○(雷达) | ||||
美国 | ○ | ○ | ○ | ○ | |
中国 | ○ | ○ | ○ | ○ | ○ |
数据来源 | 岩石 | 密度/(g·cm-3) | 磁化率/(10-6 SI) | |||
---|---|---|---|---|---|---|
变化范围 | 均值 | 变化范围 | 均值 | |||
甲基卡[ | 锂辉石伟晶岩 | 2.60~4.25 | 2.605 | |||
花岗岩 | 2.623~2.692 | 2.646 | 73.99~24.14 | 47.64 | ||
伟晶岩 | 2.593~2.699 | 2.630 | 50.90~28.60 | 40.33 | ||
二长花岗岩 | 2.554~2.772 | 2.629 | ||||
喜马拉雅淡色花岗岩 | 花岗岩、淡色花岗岩 | 10~280 | 73.4 | |||
欧洲(EuroPeg) | 伟晶岩 | 2.55~3.19 | 2.67 |
Table 2 Statistics of density and magnetic susceptibility values of pegmatites from different regions
数据来源 | 岩石 | 密度/(g·cm-3) | 磁化率/(10-6 SI) | |||
---|---|---|---|---|---|---|
变化范围 | 均值 | 变化范围 | 均值 | |||
甲基卡[ | 锂辉石伟晶岩 | 2.60~4.25 | 2.605 | |||
花岗岩 | 2.623~2.692 | 2.646 | 73.99~24.14 | 47.64 | ||
伟晶岩 | 2.593~2.699 | 2.630 | 50.90~28.60 | 40.33 | ||
二长花岗岩 | 2.554~2.772 | 2.629 | ||||
喜马拉雅淡色花岗岩 | 花岗岩、淡色花岗岩 | 10~280 | 73.4 | |||
欧洲(EuroPeg) | 伟晶岩 | 2.55~3.19 | 2.67 |
[1] | GUNN G. Critical metals handbook[M]. New York: John Wiley and Sons, 2014. |
[2] | 高世扬. 鋰及其化合物的用途[J]. 化学通报, 1964, 31 (10): 41-43. |
[3] | LA PORTA ARROBAS D, HUND K, MCCORMICK M S, et al. The growing role of minerals and metals for a low carbon future[EB/OL].[2023-06-10]. http://hdl.handle.net/10986/28380. |
[4] |
SOVACOOL B K, ALI S H, BAZILIAN M, et al. Sustainable minerals and metals for a low-carbon future[J]. Science, 2020, 367(6473): 30-33.
DOI PMID |
[5] |
MÅNBERGER A, STENQVIST B. Global metal flows in the renewable energy transition: exploring the effects of substitutes, technological mix and development[J]. Energy Policy, 2018, 119: 226-241.
DOI URL |
[6] | Secretariat of the Global Commission on the Geopolitics of Energy Transformation. A new world: the geopolitics of the energy transformation[EB/OL].[2023-06-10]. http://hdl.handle.net/1854/LU-8588274. |
[7] | IRENA. Global energy transformation: a roadmap to 2050 (2019 edition))[EB/OL]. Abu Dhabi: International Renewable Energy Agency, 2019. [2023-06-10].https://www.irena.org/publications/2019/Apr/Global-energy-transformation-The-REmap-transition-pathway. |
[8] |
MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
DOI |
[9] | 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286. |
[10] |
BOWELL R J, LAGOS L, DE LOS H, et al. Classification and characteristics of natural lithium resources[J]. Elements, 2020, 16(4), 259-264.
DOI URL |
[11] | TRUEMAN D L, CERNY P. Exploration for rare-element granitic pegmatites[C]// Mineralogical Association of Canada. Mineralogical Association of Canada short course handbook, granitic pegmatites in science and industry. Winnipeg: University of Manitoba, 1982(8): 463-494. |
[12] |
HAASE C, POHL C M. Petrophysical database for European pegmatite exploration: EuroPeg[J]. Minerals, 2022, 12(12): 1498.
DOI URL |
[13] | 王登红, 代鸿章, 刘善宝, 等. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 2022, 28(5): 743-764. |
[14] | 李璞, 戴橦谟, 邱纯一, 等. 内蒙和南岭地区某些伟晶岩和花岗岩的钾-氩法绝对年龄测定[J]. 地质科学, 1963, 4(1): 1-9. |
[15] | 邹天人, 张相宸, 贾富义, 等. 论阿尔泰 3 号伟晶岩脉的成因[J]. 矿床地质, 1986, 5(4), 34-48. |
[16] | 杨岳清, 倪云祥, 郭永泉, 等. 福建西坑花岗伟晶岩成岩成矿特征[J]. 矿床地质, 1987, 6(3), 10-21. |
[17] | 王登红, 李建康, 付小方. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 2005, 34(6): 541-547. |
[18] | 王登红, 刘善宝, 于扬, 等. 川西大型战略性新兴产业矿产基地勘查进展及其开发利用研究[J]. 地质学报, 2019, 93(6): 1444-1453. |
[19] |
SELWAY J B, BREAKS F W, TINDLE A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
DOI URL |
[20] | 李建康. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京), 2006. |
[21] | 周起凤, 秦克章, 唐冬梅, 等. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 2013, 29(9): 3004-3022. |
[22] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[23] |
LONDON D, MORGAN G B. The pegmatite puzzle[J]. Elements, 2012, 8 (4): 263-268.
DOI URL |
[24] |
LONDON D, KONTAK D J. Granitic pegmatites: scientific wonders and economic bonanzas[J]. Elements, 2012, 8(4): 257-261.
DOI URL |
[25] | ČERNÝ P. Exploration strategy and methods for pegmatite deposits of tantalum[M]//Lanthanides, tantalum and niobium. Berlin, Heidelberg: Springer, 1989: 274-302. |
[26] | 杨荣, 郝雪峰, 王登红, 等. 四川甲基卡锂矿田伟晶岩脉的地球物理探测效果: 以新三号脉(X03)为例[J]. 矿床地质, 2020, 39(1): 111-125. |
[27] | OMOSANYA K O, MOSURO G O, LANIYAN T A, et al. Prediction of gravity anomaly from calculated densities of rocks[J]. Advances in Applied Science Research, 2012, 3(4): 2059-2068. |
[28] | 付小方, 黄韬, 郝雪峰, 等. 综合找矿模型在甲基卡隐伏区稀有锂金属找矿中的应用[J]. 矿床地质, 2019, 38(4): 751-770. |
[29] |
CARDOSO-FERNANDES J, TEODORO A C, LIMA A, et al. Detecting lithium (Li) mineralizations from space: current research and future perspectives[J]. Applied Sciences, 2020, 10(5): 1785.
DOI URL |
[30] | ROSSI C, SPITTLE S, BAYARAA M, et al. An Earth observation framework for the lithium exploration[C]// IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium. Valencia: IEEE, 2018: 1616-1619. |
[31] |
CARDOSO-FERNANDES J, TEODORO A C, LIMA A. Remote sensing data in lithium (Li) exploration: a new approach for the detection of Li-bearing pegmatites[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76: 10-25.
DOI URL |
[32] | 代晶晶, 王登红, 代鸿章, 等. 遥感技术在川西甲基卡大型锂矿基地找矿填图中的应用[J]. 中国地质, 2017, 44(2): 389-398. |
[33] |
曾庆栋, 底青云, 薛国强, 等. 成矿模式与找矿模式研究的现代科学技术[J]. 地学前缘, 2021, 28(3): 295-308.
DOI |
[34] | 黄理善, 李学彪, 荆林海, 等. 基于遥感手段的高寒山区矿产资源远景区快速圈定与综合评价技术集成[J]. 中国地质, 2022, 49(1): 253-270. |
[35] | 史明震. 西昆仑大红柳滩地区锂铍多金属矿遥感示矿信息提取以及远景区预测[D]. 北京: 中国地质大学(北京), 2020. |
[36] |
PROUTY W F. Geomagnetic investigations of the university of North Carolina[J]. Transactions, American Geophysical Union, 1938, 19(1): 216.
DOI URL |
[37] |
SALEHI R, SAADI N M, KHALIL A, et al. Integrating remote sensing and magnetic data for structural geology investigation in pegmatite areas in eastern Afghanistan[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096097.
DOI URL |
[38] | AHTOLA T, KUUSELA J, KAPYAHO A, et al. Overview of lithium pegmatite exploration in the Kaustinen area in 2003-2012[R]// Report of investigation 220. Helsinki:Geological Survey of Finland, 2018: 28. |
[39] |
THOMAS M D, FORD K L, KEATING P. Review paper: exploration geophysics for intrusion-hosted rare metals[J]. Geophysical Prospecting, 2016, 64(5): 1275-1304.
DOI URL |
[40] |
SRINIVASARAO B, GUPTA A K, SHUKLA A K, et al. Application of microgravity survey in the exploration of rare-metal bearing pegmatites: a case study from marlagalla, mandya district, Karnataka[J]. Journal of the Geological Society of India, 2022, 98(8): 1126-1130.
DOI |
[41] |
COOK F A. Applications of geophysics in gemstone exploration[J]. Gems and Gemology, 1997, 33(1): 4-23.
DOI URL |
[42] |
PATTERSON J E, COOK F A. Successful application of ground-penetrating radar in the exploration of gem tourmaline pegmatites of southern California[J]. Geophysical Prospecting, 2002, 50(2): 107-117.
DOI URL |
[43] | PATTERSON J E, COOK F A. Ground penetrating radar (GPR) as an exploration tool in near surface pegmatite mining[C]// SEG technical program expanded abstracts 2004. Denver: Society of Exploration Geophysicists, 2004: 1472-1475. |
[44] | HORN A H, ARANHA P R A, JONCEW H C. Combined mineralochemical, statistical and geophysical (GPR) data as support for the exploration of pegmatite-hosted gemstones: example from the Santa Rosa Mine, MG, Brazil[J]. Mineral Deposits, 2018, 91(1/2): 1-6. |
[45] |
OYONGA1 O A, KUDAMNYA E, UGAR S I. 3D geoelectrical resistivity mapping of tourmaline-rich pegmatite in AngwanDoka, nassarawa state, northcentral Nigeria[J]. International Journal of Science and Research (IJSR), 2017, 6(12): 1646-1650.
DOI URL |
[46] | 王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053-1062. |
[47] | 马圣钞, 王登红, 刘善宝, 等. 综合勘查方法在硬岩型锂矿找矿中的应用: 以马尔康稀有金属矿田加达锂矿为例[J]. 地质学报, 2020, 94(8): 2341-2353. |
[48] | 王秋波, 梁斌, 刘婷, 等. 应用地气测量技术探测甲基卡稀有金属矿区中的隐伏矿体[J]. 地质科技情报, 2020, 39(2): 85-93. |
[49] | GAO Y B, BAGAS L, LI K, et al. Newly discovered Triassic lithium deposits in the dahongliutan area, Northwest China: a case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Sciences, 2020, 8: 591966. |
[50] |
HUANG T, FU X F, GE L, et al. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: insights from geophysical, geochemical as well as structural geology approach[J]. Ore Geology Reviews, 2020, 124: 103557.
DOI URL |
[51] |
XU Z Q, FU X F, WANG R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354/355: 105281.
DOI URL |
[52] | 何展翔, 杨国世, 陈思琪, 等. 时频电磁(TFEM)技术: 数据采集参数设计[J]. 石油地球物理勘探, 2019, 54(4): 908-914, I0013. |
[53] |
MACKIE R L, MADDEN T R. Three-dimensional magnetotelluric inversion using conjugate gradients[J]. Geophysical Journal International, 1993, 115(1): 215-229.
DOI URL |
[54] |
SIRIPUNVARAPORN W. Three-dimensional magnetotelluric inversion: an introductory guide for developers and users[J]. Surveys in Geophysics, 2012, 33(1): 5-27.
DOI URL |
[55] |
COX L H, WILSON G A, ZHDANOV M S. 3D inversion of airborne electromagnetic data using a moving footprint[J]. Exploration Geophysics, 2010, 41(4): 250-259.
DOI URL |
[56] |
EGBERT G D, KELBERT A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1): 251-267.
DOI URL |
[57] | 阮帅. 三维大地电磁有限内存拟牛顿反演[D]. 成都: 成都理工大学, 2015. |
[58] | HE L F, CHEN L, DORJI, et al. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet[J]. Geophysics, 2018, 83(2): B47-B57. |
[59] |
HE L F, DI Q Y, WANG Z X, et al. Crustal structures of the Qimantagh metallogenic belt in the northern Tibetan Plateau from magnetotelluric data and their correlation to the distribution of mineral deposits[J]. Minerals, 2023, 13: 225.
DOI URL |
[60] | WANG X J, HE L F, CHEN L, et al. Mapping deeply buried Karst cavities using controlled-source audio magnetotellurics: a case history of a tunnel investigation in southwest China[J]. Geophysics, 2017, 82(1): EN1-EN11. |
[61] |
SHEN P, PAN H D, LI C H, et al. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): rare-metal fertility and connection with the No.3 pegmatite[J]. Gondwana Research, 2022, 112: 24-51.
DOI URL |
[62] | 赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报(自然科学版), 2022, 61(1): 1-26. |
[1] | ZHANG Qidao, LI Dezong, LI Zhiwei, WANG Donghui, YU Yifan, ZHU Xingqiang, CAI Quanyu, LI Ming. Geochemical characteristics and genesis of lithium rich clay rocks in the Pudi area of northwestern Guizhou [J]. Earth Science Frontiers, 2024, 31(4): 258-280. |
[2] | CHEN Lei, NIE Xiao, LIU Kai, PANG Xuyong, ZHANG Yingli. Mineralogical and chronological characteristics of the Huoyangou pegmatite Sn(Nb-Ta) deposit in Guanpo, eastern Qinling [J]. Earth Science Frontiers, 2023, 30(5): 40-58. |
[3] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[4] | GUO Weikang, LI Guangming, FU Jiangang, ZHANG Hai, ZHANG Linkui, WU Jianyang, DONG Suiliang, YANG Yulin. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet [J]. Earth Science Frontiers, 2023, 30(5): 275-297. |
[5] | WEI Xinhao, ZHOU Nannan, ZHANG Shun. Detectability of pegmatite lithium deposits by controlled-source electromagnetic methods [J]. Earth Science Frontiers, 2023, 30(5): 265-274. |
[6] | ZHOU Qifeng, QIN Kezhang, ZHU Liqun, ZHAO Junxing. Overview of magmatic differentiation and anatexis: Insights into pegmatite genesis [J]. Earth Science Frontiers, 2023, 30(5): 26-39. |
[7] | JIAO Yanjie, HUANG Xuri, LI Guangming, FU Jiangang, LIANG Shengxian, GUO Jing. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 255-264. |
[8] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[9] | WANG Shanshan, ZHOU Kefa, BAI Yong, LU Xuechen, JIANG Guo. Spectral reflectance study of the Jing’erquan pegmatite lithium deposit, Xinjiang [J]. Earth Science Frontiers, 2023, 30(5): 205-215. |
[10] | SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review [J]. Earth Science Frontiers, 2023, 30(5): 171-184. |
[11] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[12] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[13] | RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites [J]. Earth Science Frontiers, 2023, 30(5): 106-114. |
[14] | LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview [J]. Earth Science Frontiers, 2023, 30(5): 1-25. |
[15] | TANG Yong, QIN Shanxian, ZHAO Jingyu, LÜ Zhenghang, LIU Xiqiang, WANG Hong, CHEN Jianzheng, ZHANG Hui. Solubility of rare metals as a constraint on mineralization of granitic pegmatite [J]. Earth Science Frontiers, 2022, 29(1): 81-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||