Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 134-150.DOI: 10.13745/j.esf.sf.2023.5.16
Previous Articles Next Articles
FU Jiangang1(), LI Guangming1,*(
), GUO Weikang1, ZHANG Hai1, ZHANG Linkui1, DONG Suiliang1, ZHOU Limin2, LI Yingxu1, JIAO Yanjie1, SHI Hongzhao1
Received:
2022-12-10
Revised:
2023-03-01
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt[J]. Earth Science Frontiers, 2023, 30(5): 134-150.
[1] | 李光明, 张林奎, 张志, 等. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 2021, 41(2)351-360. |
[2] | 刘晨, 王汝成, 吴福元, 等. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩[J]. 岩石学报, 2021, 37(11): 3287-3294, I0001. |
[3] | 刘小驰, 吴福元, 王汝成, 等. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示[J]. 岩石学报, 2021, 37(11)3295-3304. |
[4] | 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286. |
[5] | 吴福元, 王汝成, 刘小驰, 等. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 2021, 37(11): 3261-3276. |
[6] | 谢磊, 王汝成, 田恩农, 等. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用[J]. 科学通报, 2021, 66(35): 4574-4591. |
[7] | 周起凤, 秦克章, 何畅通, 等. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义[J]. 岩石学报, 2021, 37(11): 3305-3324. |
[8] | 付建刚, 李光明, 王根厚, 等. 西藏拉隆穹窿地质特征和Be-Nb-Ta稀有金属矿化的厘定及其战略意义[J]. 大地构造与成矿学, 2021, 45(5): 913-933. |
[9] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
[10] | 赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347. |
[11] | 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4): 1003-1008. |
[12] | 李光明, 付建刚, 郭伟康, 等. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义[J]. 岩石矿物学杂志, 2022, 41(6): 1109-1119. |
[13] | 付建刚, 李光明, 郭伟康, 等. 西藏库拉岗日穹窿次麦矽卡岩型锡铁铅锌多金属矿的发现及其意义[J/OL]. 大地构造与成矿学, 2023, 47: 1-14. DOI:10.16539/j.ddgzyckx.2022.05.011. |
[14] | 付建刚, 李光明, 董随亮, 等. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆-热液过程的指示[J]. 沉积与特提斯地质, 2022, 42(2): 288-299. |
[15] | 王汝成, 车旭东, 邬斌, 等. 中国铌钽锆铪资源[J]. 科学通报, 2020, 65(33): 3763-3777. |
[16] |
KAETER D, BARROS R, MENUGE J F, et al. The magmatic-hydrothermal transition in rare-element pegmatites from Southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta, 2018, 240: 98-130.
DOI URL |
[17] |
BADANINA E V, SITNIKOVA M A, GORDIENKO V V, et al. Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia)[J]. Ore Geology Reviews, 2015, 64: 720-735.
DOI URL |
[18] |
VAN LICHTERVELDE M, SALVI S, BEZIAT D, et al. Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco lower pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2): 257-276.
DOI URL |
[19] |
FUCHSLOCH W C, NEX P A M, KINNAIRD J A. The geochemical evolution of Nb-Ta-Sn oxides from pegmatites of the cape cross-uis pegmatite belt, Namibia[J]. Mineralogical Magazine, 2019, 83(2): 161-179.
DOI URL |
[20] |
VAN LICHTERVELDE M, GRAND’HOMME A, SAINT-BLANQUAT M, et al. U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain[J]. Mineralogy and Petrology, 2017, 111(1): 1-21.
DOI URL |
[21] |
CHE, X D, WANG R C, WU F Y, et al. Episodic Nb-Ta mineralisation in South China: constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105: 71-85.
DOI URL |
[22] |
BEURLEN H, SILVA M R R, THOMAS R, et al. Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, northeastern Brazil[J]. Mineralium Deposita, 2008, 43(2): 207-228.
DOI URL |
[23] |
BREITER K, ŠKODA R, UHER P. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic[J]. Mineralogy and Petrology, 2007, 91(3): 225-248.
DOI URL |
[24] | 张爱铖, 王汝成, 胡欢, 等. 阿尔泰可可托海3号伟晶岩脉中铌铁矿族矿物环带构造及其岩石学意义[J]. 地质学报, 2004, 78(2): 181-189. |
[25] |
RENÉ M, ŠKODA R. Nb-Ta-Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic[J]. Mineralogy and Petrology, 2011, 103(1): 37-48.
DOI URL |
[26] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China[J]. Economic Geology, 2018, 113(4): 937-960.
DOI URL |
[27] |
TIMOFEEV A, WILLIAMS-JONES A E. The origin of niobium and tantalum mineralization in the Nechalacho REE deposit, NWT, Canada[J]. Economic Geology, 2015, 110(7): 1719-1735.
DOI URL |
[28] |
BURG J P, CHEN G M. Tectonics and structural zonation of southern Tibet, China[J]. Nature, 1984, 311(5983): 219-223.
DOI |
[29] | LEE J, HAGER C, WALLIS S, et al. Middle to Late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co Rift, southern Tibet[J]. Tectonics, 2011, 30(2):1-26. |
[30] |
LEE J, HACKER B R, DINKLAGE W S, et al. Evolution of the Kangmar Dome, southern Tibet: structural, petrologic, and thermochronologic constraints[J]. Tectonics, 2000, 19(5):872-895.
DOI URL |
[31] |
FU J G, LI G M, WANG G H, et al. Structural and thermochronologic constraints on skarn rare-metal mineralization in the Cenozoic Cuonadong Dome, southern Tibet[J]. Journal of Asian Earth Sciences, 2021, 205:104612.
DOI URL |
[32] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹隆构造的建立: 来自藏南错那洞穹隆的厘定[J]. 中国地质, 2018, 45(4): 783-802. |
[33] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6): 639-649. |
[34] | 张进江, 杨雄英, 戚国伟, 等. 马拉山穹窿的活动时限及其在藏南拆离系: 北喜马拉雅片麻岩穹窿形成机制的应用[J]. 岩石学报, 2011, 27(12):3535-3544. |
[35] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅E-W向伸展变形时限: 来自藏南错那洞穹隆Ar-Ar年代学证据[J]. 地球科学, 2018(8): 2638-2650. |
[36] | 付建刚, 李光明, 董随亮, 等. 西藏北喜马拉雅拉隆穹隆含Be、Nb、Ta钠长石花岗岩的识别及意义[J]. 沉积与特提斯地质, 2020, 40(2): 91-103. |
[37] | 朱金初, 吴长年, 刘昌实, 等. 新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因[J]. 高校地质学报, 2000, 6(1): 40-52. |
[38] |
BALLOUARD C, ELBURG M A, TAPPE S, et al. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 2020, 116: 103252.
DOI URL |
[39] |
KONTAK D J. Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia. I. Geological setting and petrology[J]. The Canadian Mineralogist, 2006, 44(3): 563-598.
DOI URL |
[40] |
MELCHER F, GRAUPNER T, GÄBLER H E, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719.
DOI URL |
[1] | ZHANG Qidao, LI Dezong, LI Zhiwei, WANG Donghui, YU Yifan, ZHU Xingqiang, CAI Quanyu, LI Ming. Geochemical characteristics and genesis of lithium rich clay rocks in the Pudi area of northwestern Guizhou [J]. Earth Science Frontiers, 2024, 31(4): 258-280. |
[2] | GUO Weikang, LI Guangming, FU Jiangang, ZHANG Hai, ZHANG Linkui, WU Jianyang, DONG Suiliang, YANG Yulin. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet [J]. Earth Science Frontiers, 2023, 30(5): 275-297. |
[3] | WEI Xinhao, ZHOU Nannan, ZHANG Shun. Detectability of pegmatite lithium deposits by controlled-source electromagnetic methods [J]. Earth Science Frontiers, 2023, 30(5): 265-274. |
[4] | JIAO Yanjie, HUANG Xuri, LI Guangming, FU Jiangang, LIANG Shengxian, GUO Jing. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 255-264. |
[5] | HE Lanfang, LI Liang, SHEN Ping, WANG Sihao, LI Zhiyuan, ZHOU Nannan, CHEN Rujun, QIN Kezhang. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay [J]. Earth Science Frontiers, 2023, 30(5): 244-254. |
[6] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[7] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[8] | WANG Shanshan, ZHOU Kefa, BAI Yong, LU Xuechen, JIANG Guo. Spectral reflectance study of the Jing’erquan pegmatite lithium deposit, Xinjiang [J]. Earth Science Frontiers, 2023, 30(5): 205-215. |
[9] | SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review [J]. Earth Science Frontiers, 2023, 30(5): 171-184. |
[10] | RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites [J]. Earth Science Frontiers, 2023, 30(5): 106-114. |
[11] | TANG Yong, QIN Shanxian, ZHAO Jingyu, LÜ Zhenghang, LIU Xiqiang, WANG Hong, CHEN Jianzheng, ZHANG Hui. Solubility of rare metals as a constraint on mineralization of granitic pegmatite [J]. Earth Science Frontiers, 2022, 29(1): 81-92. |
[12] | ZHENG Youye, WANG Da, YI Jianzhou, YU Zezhang, JIANG Zongyang, LI Xiaoxia, SHI Gongwen, XU Jian, LIANG Yuchun, DOU Xiaofang, REN Huan. Antimony mineralization and prospecting orientation in the North Himalayan Metallogenic Belt, Tibet [J]. Earth Science Frontiers, 2022, 29(1): 200-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||