Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 415-425.DOI: 10.13745/j.esf.sf.2022.2.79
Previous Articles Next Articles
CHEN Shizhong1,2(), ZHOU Yan1, XING Guangfu1, XU Mincheng1,*(
), FAN Feipeng1, XI Wanwan1, ZHU Xiaoting1, GUO Weimin1
Received:
2021-01-05
Revised:
2022-05-09
Online:
2023-03-25
Published:
2023-01-05
Contact:
XU Mincheng
CLC Number:
CHEN Shizhong, ZHOU Yan, XING Guangfu, XU Mincheng, FAN Feipeng, XI Wanwan, ZHU Xiaoting, GUO Weimin. Relationship between the large scale fenitization and REE mineralization on the border between Zhejiang and Fujian provinces: A review of recent research progress[J]. Earth Science Frontiers, 2023, 30(2): 415-425.
期次 | 岩性 | 年龄/Ma | 地点 | 测年方法 | 备注 |
---|---|---|---|---|---|
印支期 | 石英闪长岩 | 252 | 铁山 | 锆石U-Pb | 文献[ |
石英正长岩* | 254±4 | 铁山 | 锆石U-Pb | 文献[ | |
燕山期 | 流纹质熔结凝灰岩 | 173 | 东峰 | 锆石U-Pb | 文献[ |
花岗斑岩 | 153 | 夏山 | 锆石U-Pb | 文献[ | |
霏细花岗闪长斑岩 | 119 | 狮子岗 | 锆石U-Pb | 文献[ | |
钾长花岗岩 | 118 | 铜盆庵 | 锆石U-Pb | 未发数据 | |
花岗闪长斑岩 | 98 | 狮子岗 | 锆石U-Pb | 未发数据 |
Table 1 Mesozoic magmatic rocks and their ages of Tieshan, Zhenghe, Fujian Province
期次 | 岩性 | 年龄/Ma | 地点 | 测年方法 | 备注 |
---|---|---|---|---|---|
印支期 | 石英闪长岩 | 252 | 铁山 | 锆石U-Pb | 文献[ |
石英正长岩* | 254±4 | 铁山 | 锆石U-Pb | 文献[ | |
燕山期 | 流纹质熔结凝灰岩 | 173 | 东峰 | 锆石U-Pb | 文献[ |
花岗斑岩 | 153 | 夏山 | 锆石U-Pb | 文献[ | |
霏细花岗闪长斑岩 | 119 | 狮子岗 | 锆石U-Pb | 文献[ | |
钾长花岗岩 | 118 | 铜盆庵 | 锆石U-Pb | 未发数据 | |
花岗闪长斑岩 | 98 | 狮子岗 | 锆石U-Pb | 未发数据 |
[1] |
DHARMA RAO C V, SANTOSH M, DONG Y P. U-Pb zircon chronology of the Pangidi-Kondapalle layered intrusion, Eastern Ghats belt, India: constraints on Mesoproterozoic arc magmatism in a convergent margin setting[J]. Journal of Asian Earth Sciences, 2012, 49: 362-375.
DOI URL |
[2] |
DE VITO C, PEZZOTTA F, FERRINI V, et al. Nb-Ti-Ta oxides in the gem-mineralized and “hybrid” anjanabonoina granitic pegmatite, central Madagascar: a record of magmatic and postmagmatic events[J]. The Canadian Mineralogist, 2006, 44(1): 87-103.
DOI URL |
[3] |
LICHTERVELDE M V, SALVI S, BÉZIAT D, et al. Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the tanco lower pegmatite, Manitoba, Canada[J]. Economic Geology. 2007, 102(2): 257-276.
DOI URL |
[4] |
BEURLEN H, SILVA M R R, THOMAS R, et al. Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil[J]. Mineralium Deposita, 2008, 43(2): 207-228.
DOI URL |
[5] |
RAO C, WANG R C, HU H, et al. Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China[J]. The Canadian Mineralogist. 2009, 47(5): 1195-1212.
DOI URL |
[6] |
RAO C V D, SANTOSH M, ZHANG S H. Neoproterozoic massif-type anorthosites and related magmatic suites from the Eastern Ghats Belt, India: implications for slab window magmatism at the terminal stage of collisional orogeny[J]. Precambrian Research, 2014, 240: 60-78.
DOI URL |
[7] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[8] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
[9] |
HOU Z Q, TIAN S H, XIE Y L, et al. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China[J]. Ore Geology Reviews, 2009, 36(1/2/3): 65-89.
DOI URL |
[10] | HEDENQUIST J W. Mineralization associated with volcanic-related hydrothermal systems in circum-Pacific basin: abstract[J]. AAPG Bulletin, 1986, 70: 347-364.. |
[11] |
SMITH D J, NADEN J, JENKIN G R T, et al. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems[J]. Ore Geology Reviews, 2017, 89: 772-779.
DOI URL |
[12] |
SILLITOE R H. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration[J]. Mineralium Deposita, 2002, 37(1): 4-13.
DOI URL |
[13] |
VAN DONGEN M, WEINBERG R F, TOMKINS A G. REE-Y,Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation[J]. Economic Geology, 2010, 105(4): 763-776.
DOI URL |
[14] | DAILEY S R, CHRISTIANSEN E H, DORAIS M J, et al. Geochemistry of the fluorine-and beryllium-rich Spor mountain rhyolite, western Utah[C]. Geologic Studies in Utah, GSA Annual Meeting in Denver, Colorado, USA, 2016: 148-10. |
[15] |
DAILEY S R, CHRISTIANSEN E H, DORAIS M J, et al. Origin of the fluorine-and beryllium-rich rhyolites of the Spor Mountain Formation, western Utah[J]. American Mineralogist, 2018, 103(8): 1228-1252.
DOI URL |
[16] | FOLEY N, AYUSO R. Shrimp U-Pb zircon and opal geochronology, isotope geochemistry, and genesis of the super large Be deposit at Spor Mountain, Utah, USA[J]. Magmatism of the Earth and Related Strategic Metal Deposits. 2018(1): 90-94. |
[17] |
AYUSO R A, FOLEY N K, VAZQUEZ J A, et al. SHRIMP U-Pb zircon geochronology of volcanic rocks hosting world class Be-U mineralization at Spor Mountain, Utah, USA[J]. Journal of Geochemical Exploration, 2020, 209: 106401.
DOI URL |
[18] |
SCHINDLER M, FAYEK M, COURCHESNE B, et al. Uranium-bearing opals: products of U-mobilization, diffusion, and transformation processes[J]. American Mineralogist, 2017, 102(6): 1154-1164.
DOI URL |
[19] |
BARTON M D, YOUNG S. Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 591-691.
DOI URL |
[20] |
SUN C G, LIANG Y. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts[J]. Chemical Geology, 2013, 358: 23-36.
DOI URL |
[21] |
KOVALENKO V I, TSARYEVA G M, GOREGLYAD A V, et al. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia[J]. Economic Geology, 1995, 90(3): 530-547.
DOI URL |
[22] |
MIGDISOV A A, WILLIAMS-JONES A E, WAGNER T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 ℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(23): 7087-7109.
DOI URL |
[23] |
ERDMANN S, WODICKA N, JACKSON S E, et al. Zircon textures and composition: refractory recorders of magmatic volatile evolution?[J]. Contributions to Mineralogy and Petrology, 2013, 165(1): 45-71.
DOI URL |
[24] |
AYERS J C, ZHANG L, LUO Y, et al. Zircon solubility in alkaline aqueous fluids at upper crustal conditions[J]. Geochimica et Cosmochimica Acta, 2012, 96: 18-28.
DOI URL |
[25] |
VEKSLER I V, DORFMAN A M, KAMENETSKY M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2847-2860.
DOI URL |
[26] |
SALVI S, WILLIAMS-JONES A E. Alteration,HFSE mineralisation and hydrocarbon formation in Peralkaline igneous systems: insights from the strange lake pluton, Canada[J]. Lithos, 2006, 91(1/2/3/4): 19-34.
DOI URL |
[27] |
YANG W B, NIU H C, LI N B, et al. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: implications for rare metal mineralization[J]. Lithos, 2020, 358/359: 105411.
DOI URL |
[28] |
GYSI A P, WILLIAMS-JONES A E, COLLINS P. Lithogeochemical vectors for hydrothermal processes in the strange lake peralkaline granitic REE-Zr-Nb deposit[J]. Economic Geology, 2016, 111(5): 1241-1276.
DOI URL |
[29] |
VERPLANCK P L. The role of fluids in the formation of rare earth element deposits[J]. Procedia Earth and Planetary Science, 2017, 17: 758-761.
DOI URL |
[30] |
RICHTER L, DIAMOND L W, ATANASOVA P, et al. Hydrothermal formation of heavy rare earth element (HREE)-xenotime deposits at 100 ℃ in a sedimentary basin[J]. Geology, 2018, 46(3): 263-266.
DOI URL |
[31] |
KONTONIKAS-CHAROS A, CIOBANU C L, COOK N J, et al. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia[J]. Mineralogy and Petrology, 2018, 112(2): 145-172.
DOI URL |
[32] |
LE BAS M J, XUEMING Y, TAYLOR R N, et al. New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China[J]. Mineralogy and Petrology, 2007, 90(3/4): 223-248.
DOI URL |
[33] |
KOZLOV E N, ARZAMASTSEV A A. Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula[J]. Petrology, 2015, 23(1): 45-67.
DOI URL |
[34] | VON MARAVI H C. Geochemische und petrographische Untersuchungen zur Genese des niobführenden Karbonatit/Cancrinit-Syenitkomplexes von Lueshe, Kivu/NE-Zaire[D]. Berlin: Technische Universitt Berlin,1983. |
[35] |
ELLIOTT H A L, WALL F, CHAKHMOURADIAN A R, et al. Fenites associated with carbonatite complexes: a review[J]. Ore Geology Reviews, 2018, 93: 38-59.
DOI URL |
[36] |
MOROGAN V. Ijolite versus carbonatite as sources of fenitization[J]. Terra Nova, 1994, 6(2): 166-176.
DOI URL |
[37] |
LE BAS M J. Fenites associated with carbonatites[J]. The Canadian Mineralogist, 2008, 46(4): 915-932.
DOI URL |
[38] |
KRESTEN P, MOROGAN V. Fenitization at the Fen complex, southern Norway[J]. Lithos, 1986, 19(1): 27-42.
DOI URL |
[39] |
MOROGAN V. Mass transfer and REE mobility during fenitization at Alnö, Sweden[J]. Contributions to Mineralogy and Petrology, 1989, 103(1): 25-34.
DOI URL |
[40] | MOROGAN V, MARTIN R F. Mineralogy and partial melting of fenitized crustal xenoliths in the Oldoinyo Lengai carbonatitic volcano, Tanzania[J]. American Mineralogist. 1985, 70(11/12): 1114-1126. |
[41] |
SUIKKANEN E, RÄMÖ O T. Metasomatic alkali-feldspar syenites (episyenites) of the Proterozoic Suomenniemi rapakivi granite complex, southeastern Finland[J]. Lithos, 2017, 294/295: 1-19.
DOI URL |
[42] |
GYSI A P, WILLIAMS-JONES A E. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: a reaction path model[J]. Geochimica et Cosmochimica Acta, 2013, 122: 324-352.
DOI URL |
[43] |
WILLIAMS-JONES A E, PALMER D A S. The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatite, India: implications for fenitisation[J]. Chemical Geology, 2002, 185(3/4): 283-301.
DOI URL |
[44] |
SUIKKANEN E, RÄMÖ O T, AHTOLA T, et al. Clinopyroxene episyenites in a Proterozoic rapakivi granite, SE Finland—recrystallization textures, mass transfer and implications for the petrology of A-type granite complexes[J]. Mineralogy and Petrology, 2019, 113(6): 727-743.
DOI URL |
[45] |
PÉREZ-SOBA C, VILLASECA C. Li-Na-metasomatism related to I-type granite magmatism: a case study of the highly fractionated La Pedriza pluton (Iberian Variscan belt)[J]. Lithos, 2019, 344/345: 159-174.
DOI URL |
[46] |
TROFANENKO J, WILLIAMS-JONES A E, SIMANDL G J, et al. The nature and origin of the REE mineralization in the wicheeda carbonatite, British Columbia, Canada[J]. Economic Geology, 2016, 111(1): 199-223.
DOI URL |
[47] |
FAN H R, HU F F, YANG K F, et al. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan obo REE deposit, Northern China[J]. Ore Geology Reviews, 2014, 63: 510-519.
DOI URL |
[48] |
LIU S, FAN H R, YANG K F, et al. Fenitization in the giant Bayan obo REE-Nb-Fe deposit: implication for REE mineralization[J]. Ore Geology Reviews, 2018, 94: 290-309.
DOI URL |
[49] |
AGUE J J. Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE)[J]. American Mineralogist, 2017, 102(9): 1796-1821.
DOI URL |
[50] |
HOU Z Q, LIU Y, TIAN S H, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231.
DOI PMID |
[51] |
LIU Y, CHEN Z Y, YANG Z S, et al. Mineralogical and geochemical studies of brecciated ores in the dalucao REE deposit, Sichuan Province, southwestern China[J]. Ore Geology Reviews, 2015, 70: 613-636.
DOI URL |
[52] |
XIE Y L, LI Y X, HOU Z Q, et al. A model for carbonatite hosted REE mineralisation—the Mianning-Dechang REE belt, western Sichuan Province, China[J]. Ore Geology Reviews, 2015, 70: 595-612.
DOI URL |
[53] |
LIU Y, HOU Z Q, TIAN S H, et al. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting[J]. Ore Geology Reviews, 2015, 64: 554-568.
DOI URL |
[54] |
LIU Y, CHAKHMOURADIAN A R, HOU Z Q, et al. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry[J]. Mineralium Deposita, 2019, 54(5): 701-718.
DOI URL |
[55] | 王凯怡. 与碳酸岩共生的霓长岩[J]. 地质科学, 2015, 50(1): 203-212. |
[56] | 杨学明, 杨晓勇, 范宏瑞, 等. 霓长岩岩石学特征及其地质意义评述[J]. 地质论评, 2000, 46(5): 481-490. |
[57] |
DOWMAN E, WALL F, TRELOAR P, et al. Rare-earth mobility as a result of multiple phases of fluid activity in fenite around the Chilwa Island Carbonatite, Malawi[J]. Mineralogical Magazine. 2017, 81(6): 1367-1395.
DOI URL |
[58] |
NORMANDEAU P X, HARLOV D E, CORRIVEAU L, et al. Characterization of fluorapatite within iron oxide alkali-calcic alteration systems of the great bear magmatic zone: a potential metasomatic process record[J]. The Canadian Mineralogist, 2018, 56(2): 167-187.
DOI URL |
[59] |
DOSTAL J. Rare earth element deposits of alkaline igneous rocks[J]. Resources, 2017, 6(3): 34.
DOI URL |
[60] |
XU C, KYNICKÝ J, SMITH M P, et al. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 2017, 8: 14598.
DOI PMID |
[61] | 佘海东, 范宏瑞, 胡芳芳, 等. 稀土元素在热液中的迁移与沉淀[J]. 岩石学报, 2018, 34(12): 3567-3581. |
[62] | 王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床类型的思考和认识[J]. 矿物学报: 2017(增刊) 248-249. |
[63] | 林传仙, 郑作平. 风化壳淋积型稀土矿床成矿机理的实验研究[J]. 地球化学, 1994, 23(2): 189-198. |
[64] |
MÖLLER V, WILLIAMS-JONES A E. Magmatic and hydrothermal controls on the mineralogy of the basal zone, Nechalacho REE-Nb-Zr deposit, Canada[J]. Economic Geology, 2017, 112(8): 1823-1856.
DOI URL |
[65] | CHEN Shizhong, XING Guangfu, LI Yanan, et al. Re-recognition of Tieshan “Syenite” and its geological significance in Zhenghe, Fujian Province[J]. Acta Geologica Sinica, 2017, 91 (Suppl.1): 72-73. |
[66] | CHEN S Z, XING G F, LI Y N, et al. Tieshan “Syenite” is an Alkali Metasomatic Rock in Zhenghe, Fujian Province[J]. Acta Geologica Sinica, 2018, 92(9): 1843-1858. |
[67] | 李亚楠, 邢光福, 周涛发, 等. 福建政和地区铜盆庵花岗岩年代学研究及其地质意义[J]. 矿物岩石, 2015, 35(1): 73-81. |
[68] | 周延, 陈世忠, 张红亮, 等. 红外光谱蚀变矿物填图技术在找矿勘查中的应用: 以福建政和狮子岗铜矿为例[J]. 华东地质, 2019, 40(4): 289-298. |
[69] | 隰弯弯. 福建省政和县狮子岗斑岩型铜多金属矿地质特征及成因认识[J]. 地质论评, 2013, 59(增刊): 383-384. |
[70] | 陈世忠, 李亚楠, 朱筱婷, 等. 福建政和铁山“印支期正长岩”是燕山期钾质交代岩的矿物学证据[J]. 地质学报, 2018, 92(9): 1843-1858. |
[71] |
HENDRY D A F, CHIVAS A R, REED S J B, et al. Geochemical evidence for magmatic fluids in porphyry copper mineralization[J]. Contributions to Mineralogy and Petrology, 1982, 78(4): 404-412.
DOI URL |
[72] | MOUSTAFA E O, 巩恩普, 孙旭东, 等. 浙江花岗岩中斜长石钾交代产生的条纹长石(英文)[J]. 地质与资源, 2003, 12(3): 129-138. |
[73] |
SUIKKANEN E, RÄMÖ O T. Metasomatic alkali-feldspar syenites within the Suomenniemi rapakivi granite complex, southeastern Finland[J] Lithos, 2017, 294/295:1-19.
DOI URL |
[74] | CANGELOSI D, BROOM-FENDLEY S, BANKS D, et al. Light rare earth element redistribution during hydrothermal alteration at the Okorusu carbonatite complex, Namibia[J]. Mineralogical Magazine. 2019: 1-54. |
[75] |
WANG Q, LI J W, JIAN P, et al. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension[J]. Earth and Planetary Science Letters, 2005, 230(3/4): 339-354.
DOI URL |
[76] | 李亚楠, 邢光福, 邢新龙, 等. 闽北地区中侏罗世火山岩的发现及其地质意义[J]. 地质通报, 2015, 34(12): 2227-2235. |
[77] |
CHEN S Z, LI Y N, FAN F P, et al. Mineralogy and alkali metasomatism of Tieshan complex body in Zhenghe County, Fujian Province, southeastern China[J]. Ore Geology Reviews, 2021, 139: 104432.
DOI URL |
[1] | ZENG Zhaoyang, NING Shuzheng, WANG Ziguo. Strategic mineral resources in coal: A case study on gallium and germanium [J]. Earth Science Frontiers, 2024, 31(6): 331-349. |
[2] | ZHANG Qidao, LI Dezong, LI Zhiwei, WANG Donghui, YU Yifan, ZHU Xingqiang, CAI Quanyu, LI Ming. Geochemical characteristics and genesis of lithium rich clay rocks in the Pudi area of northwestern Guizhou [J]. Earth Science Frontiers, 2024, 31(4): 258-280. |
[3] | WANG Rui, ZHANG Jingbo, LUO Chenhao, ZHOU Qiushi, XIA Wenjie, ZHAO Yun. Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts [J]. Earth Science Frontiers, 2024, 31(1): 211-225. |
[4] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[5] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
[6] | JIANG Guo, ZHOU Kefa, WANG Jinlin, BAI Yong, SUN Guoqing, WANG Wei. Identification of lithium-beryllium granitic pegmatites based on deep learning [J]. Earth Science Frontiers, 2023, 30(5): 185-196. |
[7] | WANG Shanshan, ZHOU Kefa, BAI Yong, LU Xuechen, JIANG Guo. Spectral reflectance study of the Jing’erquan pegmatite lithium deposit, Xinjiang [J]. Earth Science Frontiers, 2023, 30(5): 205-215. |
[8] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[9] | HE Lanfang, LI Liang, SHEN Ping, WANG Sihao, LI Zhiyuan, ZHOU Nannan, CHEN Rujun, QIN Kezhang. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay [J]. Earth Science Frontiers, 2023, 30(5): 244-254. |
[10] | JIAO Yanjie, HUANG Xuri, LI Guangming, FU Jiangang, LIANG Shengxian, GUO Jing. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 255-264. |
[11] | ZHOU Qifeng, QIN Kezhang, ZHU Liqun, ZHAO Junxing. Overview of magmatic differentiation and anatexis: Insights into pegmatite genesis [J]. Earth Science Frontiers, 2023, 30(5): 26-39. |
[12] | WEI Xinhao, ZHOU Nannan, ZHANG Shun. Detectability of pegmatite lithium deposits by controlled-source electromagnetic methods [J]. Earth Science Frontiers, 2023, 30(5): 265-274. |
[13] | GUO Weikang, LI Guangming, FU Jiangang, ZHANG Hai, ZHANG Linkui, WU Jianyang, DONG Suiliang, YANG Yulin. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet [J]. Earth Science Frontiers, 2023, 30(5): 275-297. |
[14] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[15] | CHEN Lei, NIE Xiao, LIU Kai, PANG Xuyong, ZHANG Yingli. Mineralogical and chronological characteristics of the Huoyangou pegmatite Sn(Nb-Ta) deposit in Guanpo, eastern Qinling [J]. Earth Science Frontiers, 2023, 30(5): 40-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||