Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 284-291.DOI: 10.13745/j.esf.sf.2021.10.2
Previous Articles Next Articles
HU Yiming(), CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin
Received:
2022-01-30
Revised:
2022-02-18
Online:
2022-05-25
Published:
2022-04-28
CLC Number:
HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm[J]. Earth Science Frontiers, 2022, 29(3): 284-291.
分级 | 要素距平值/% | 分级 | 要素距平值/% |
---|---|---|---|
枯水 | 距平<-20 | 偏丰 | 10<距平≤20 |
偏枯 | -20≤距平<-10 | 丰 | 距平>20 |
正常 | -10≤距平≤10 |
Table 1 Medium-long term qualitative prediction grade
分级 | 要素距平值/% | 分级 | 要素距平值/% |
---|---|---|---|
枯水 | 距平<-20 | 偏丰 | 10<距平≤20 |
偏枯 | -20≤距平<-10 | 丰 | 距平>20 |
正常 | -10≤距平≤10 |
时间 | 王家坝指标1/% | 王家坝指标2/% | 蚌埠指标1/% | 蚌埠指标2/% | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ada | RF | SVM | Ada | RF | SVM | Ada | RF | SVM | Ada | RF | SVM | |||||||||||
当年11月 | 100.0 | 93.8 | 100.0 | 70.8 | 68.8 | 75.3 | 100.0 | 94.0 | 94.0 | 82.0 | 78.0 | 86.0 | ||||||||||
当年12月 | 100.0 | 97.9 | 93.8 | 77.1 | 70.8 | 76.4 | 100.0 | 100.0 | 98.0 | 82.0 | 74.0 | 82.0 | ||||||||||
次年1月 | 100.0 | 98.0 | 100.0 | 69.4 | 63.3 | 70.6 | 100.0 | 98.0 | 94.1 | 76.5 | 78.4 | 62.7 | ||||||||||
次年2月 | 100.0 | 98.0 | 100.0 | 69.4 | 83.7 | 86.8 | 100.0 | 94.1 | 88.2 | 76.5 | 66.7 | 58.8 | ||||||||||
次年3月 | 100.0 | 89.8 | 93.9 | 83.7 | 83.7 | 82.8 | 100.0 | 98.0 | 86.3 | 92.2 | 86.3 | 72.5 | ||||||||||
次年4月 | 100.0 | 100.0 | 100.0 | 83.7 | 87.8 | 81.6 | 100.0 | 90.2 | 88.2 | 72.5 | 66.7 | 72.5 | ||||||||||
次年5月 | 100.0 | 98.0 | 87.8 | 81.6 | 75.5 | 73.5 | 100.0 | 90.2 | 100.0 | 72.5 | 68.6 | 80.4 | ||||||||||
次年6月 | 100.0 | 98.0 | 100.0 | 87.8 | 75.5 | 89.8 | 100.0 | 98.0 | 98.0 | 82.4 | 78.4 | 86.3 | ||||||||||
次年7月 | 100.0 | 98.0 | 100.0 | 69.4 | 65.3 | 81.6 | 100.0 | 98.0 | 94.1 | 74.5 | 76.5 | 82.4 | ||||||||||
次年8月 | 98.0 | 95.9 | 91.8 | 83.7 | 81.6 | 85.8 | 100.0 | 82.4 | 100.0 | 92.2 | 62.7 | 90.2 | ||||||||||
次年9月 | 100.0 | 93.9 | 83.7 | 81.6 | 71.4 | 67.3 | 100.0 | 96.1 | 100.0 | 80.4 | 82.4 | 80.4 | ||||||||||
次年10月 | 100.0 | 98.0 | 100.0 | 89.8 | 89.8 | 87.4 | 100.0 | 98.0 | 84.3 | 88.2 | 88.2 | 64.7 | ||||||||||
平均 | 99.8 | 96.6 | 95.9 | 79.0 | 76.4 | 79.9 | 100.0 | 94.8 | 93.8 | 81.0 | 75.6 | 76.6 |
Table 2 Qualification rates of monthly runoff prediction at the Wangjiaba and Bengbu stations
时间 | 王家坝指标1/% | 王家坝指标2/% | 蚌埠指标1/% | 蚌埠指标2/% | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ada | RF | SVM | Ada | RF | SVM | Ada | RF | SVM | Ada | RF | SVM | |||||||||||
当年11月 | 100.0 | 93.8 | 100.0 | 70.8 | 68.8 | 75.3 | 100.0 | 94.0 | 94.0 | 82.0 | 78.0 | 86.0 | ||||||||||
当年12月 | 100.0 | 97.9 | 93.8 | 77.1 | 70.8 | 76.4 | 100.0 | 100.0 | 98.0 | 82.0 | 74.0 | 82.0 | ||||||||||
次年1月 | 100.0 | 98.0 | 100.0 | 69.4 | 63.3 | 70.6 | 100.0 | 98.0 | 94.1 | 76.5 | 78.4 | 62.7 | ||||||||||
次年2月 | 100.0 | 98.0 | 100.0 | 69.4 | 83.7 | 86.8 | 100.0 | 94.1 | 88.2 | 76.5 | 66.7 | 58.8 | ||||||||||
次年3月 | 100.0 | 89.8 | 93.9 | 83.7 | 83.7 | 82.8 | 100.0 | 98.0 | 86.3 | 92.2 | 86.3 | 72.5 | ||||||||||
次年4月 | 100.0 | 100.0 | 100.0 | 83.7 | 87.8 | 81.6 | 100.0 | 90.2 | 88.2 | 72.5 | 66.7 | 72.5 | ||||||||||
次年5月 | 100.0 | 98.0 | 87.8 | 81.6 | 75.5 | 73.5 | 100.0 | 90.2 | 100.0 | 72.5 | 68.6 | 80.4 | ||||||||||
次年6月 | 100.0 | 98.0 | 100.0 | 87.8 | 75.5 | 89.8 | 100.0 | 98.0 | 98.0 | 82.4 | 78.4 | 86.3 | ||||||||||
次年7月 | 100.0 | 98.0 | 100.0 | 69.4 | 65.3 | 81.6 | 100.0 | 98.0 | 94.1 | 74.5 | 76.5 | 82.4 | ||||||||||
次年8月 | 98.0 | 95.9 | 91.8 | 83.7 | 81.6 | 85.8 | 100.0 | 82.4 | 100.0 | 92.2 | 62.7 | 90.2 | ||||||||||
次年9月 | 100.0 | 93.9 | 83.7 | 81.6 | 71.4 | 67.3 | 100.0 | 96.1 | 100.0 | 80.4 | 82.4 | 80.4 | ||||||||||
次年10月 | 100.0 | 98.0 | 100.0 | 89.8 | 89.8 | 87.4 | 100.0 | 98.0 | 84.3 | 88.2 | 88.2 | 64.7 | ||||||||||
平均 | 99.8 | 96.6 | 95.9 | 79.0 | 76.4 | 79.9 | 100.0 | 94.8 | 93.8 | 81.0 | 75.6 | 76.6 |
[1] | 郦于杰, 梁忠民, 唐甜甜. 基于支持向量回归机的长期径流预报及不确定性分析[J]. 南水北调与水利科技, 2018, 16(3): 45-50. |
[2] |
BENNETT J C, WANG Q J, LI M, et al. Reliable long-range ensemble streamflow forecasts: combining calibrated climate forecasts with a conceptual runoff model and a staged error model[J]. Water Resources Research, 2016, 52(10): 8238-8259.
DOI URL |
[3] |
LIANG Z M, TANG T T, LI B Q, et al. Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: case study of Danjiangkou Reservoir[J]. Hydrology Research, 2018, 49(5): 1513-1527.
DOI URL |
[4] | 刘甜, 梁忠民, 邱辉, 等. 基于CFS的汉江上游梯级水库系统月入库径流预测[J]. 水电能源科学, 2019, 37(8): 14-17, 10. |
[5] |
HU Y M, SCHMEITS M J, VAN ANDEL S J, et al. A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution[J]. Journal of Hydrometeorology, 2016, 17(9): 2405-2417.
DOI URL |
[6] | 赵铜铁钢, 杨大文, 蔡喜明, 等. 基于随机森林模型的长江上游枯水期径流预报研究[J]. 水力发电学报, 2012, 31(3): 18-24, 38. |
[7] | ADAMOWSKI J, FUNG CHAN H, PRASHER S O, et al. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada[J]. Water Resources Research, 2012, 48(1): W01528. |
[8] | 农振学, 王超, 雷晓辉. 基于主成分分析和BP神经网络的赣江流域中长期径流预报[J]. 水电能源科学, 2018, 36(1): 16-19. |
[9] | 范钟秀. 中长期水文预报[M]. 南京: 河海大学出版社, 1999. |
[10] | 谢帅, 黄跃飞, 李铁键, 等. 不同流域的自回归径流预报效果对比[J]. 应用基础与工程科学学报, 2018, 26(4): 723-736. |
[11] | 李福兴, 陈伏龙, 蔡文静, 等. 基于EMD组合模型的径流多尺度预测[J]. 地学前缘, 2021, 28(1): 428-437. |
[12] |
HUANG S Z, CHANG J X, HUANG Q, et al. Monthly streamflow prediction using modified EMD-based support vector machine[J]. Journal of Hydrology, 2014, 511: 764-775.
DOI URL |
[13] |
YASEEN Z M, JAAFAR O, DEO R C, et al. Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq[J]. Journal of Hydrology, 2016, 542: 603-614.
DOI URL |
[14] | 李伶杰, 王银堂, 胡庆芳, 等. 基于随机森林与支持向量机的水库长期径流预报[J]. 水利水运工程学报, 2020(4): 33-40. |
[15] | 陶思铭, 梁忠民, 陈在妮, 等. 长短期记忆网络在中长期径流预报中的应用[J]. 武汉大学学报(工学版), 2021, 54(1): 21-27. |
[16] | NI L L, WANG D, SINGH V P, et al. Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296. |
[17] |
SHEN C P. A transdisciplinary review of deep learning research and its relevance for water resources scientists[J]. Water Resources Research, 2018, 54(11): 8558-8593.
DOI URL |
[18] | 王健宗, 瞿晓阳. 深入理解AutoML和AutoDL: 构建自动化机器学习与深度学习平台[M]. 北京: 机械工业出版社, 2019. |
[19] |
HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572.
DOI URL |
[20] | 洪瑾, 甘成势, 刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54. |
[21] | 游文霞, 申坤, 杨楠, 等. 基于AdaBoost集成学习的窃电检测研究[J]. 电力系统保护与控制, 2020, 48(19): 151-159. |
[22] | 中华人民共和国水利部.SD 250-2000水文情报预报规范[S]. 北京: 中国水利水电出版社, 2000. |
[23] | BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13: 281-305. |
[1] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[2] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[3] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[4] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[5] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[6] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[7] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[8] | ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao. Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian [J]. Earth Science Frontiers, 2021, 28(3): 221-235. |
[9] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[10] | LI Fuxing, CHEN Fulong, CAI Wenjing, HE Chaofei, LONG Aihua. Multiscale runoff prediction based on the EMD combined model [J]. Earth Science Frontiers, 2021, 28(1): 428-437. |
[11] | ZHANG Qi,JIAO Shoutao,LI Mingchao,ZHU Yueqin,HAN Shuai,LIU Xuelong, JIN Weijun,CHEN Wanfeng,LIU Xinyu. Applicability of quantum entanglement technology in geology [J]. Earth Science Frontiers, 2019, 26(4): 159-169. |
[12] | ZUO Renguang. Exploration geochemical data mining and weak geochemical anomalies identification [J]. Earth Science Frontiers, 2019, 26(4): 67-75. |
[13] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[14] | ZHANG Baoyue,SUN Jiankun,LUO Xiong,JIN Weijun,WANG Long,DU Xueliang,CHEN Wanfeng,DU Jun,ZHANG Qi,ZHU Yueqin. Data analysis of major and trace element of gabbro clinopyroxene from different tectonic setting [J]. Earth Science Frontiers, 2019, 26(4): 33-44. |
[15] | LUO Jianmin,ZHANG Qi. Big data pioneers new ways of geoscience research: identifying relevant relationships to enhance research feasibility [J]. Earth Science Frontiers, 2019, 26(4): 6-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||