Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 391-404.DOI: 10.13745/j.esf.sf.2020.3.28
Previous Articles Next Articles
WANG Yinhong1(), LIU Jiajun1, ZHANG Mei2, ZHANG Fangfang1, WANG Kang1, XIAN Xuechen1, GUO Lingjun2
Received:
2020-01-03
Revised:
2020-02-09
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
WANG Yinhong, LIU Jiajun, ZHANG Mei, ZHANG Fangfang, WANG Kang, XIAN Xuechen, GUO Lingjun. Fluid inclusion and C-O-S-Pb isotopic studies of the Azhahada Cu-Bi deposit in Inner Mongolia, China[J]. Earth Science Frontiers, 2020, 27(2): 391-404.
阶段 | 样品描述 | 包裹体类型 | N | 大小/μm | Tm,ice/℃ | Th/℃ | 盐度w(NaCleq)/% | 密度/(g·cm-3) |
---|---|---|---|---|---|---|---|---|
阶段Ⅰ | 石英-黄铁矿-黄铜矿脉 | L | 38 | 4~15 | -19.7~-6.0 | 229~410 | 9.2~22.2 | 1.06~1.16 |
V | 10 | 5~12 | -19.8~-12.0 | 224~427 | 16.0~22.4 | 1.12~1.16 | ||
阶段Ⅱ | 石英-多金属硫化物- 自然铋脉 | L | 36 | 4~14 | -18.5~-7.0 | 180~361 | 10.5~21.3 | 1.08~1.16 |
V | 6 | 5~12 | -17.4~-14.0 | 245~343 | 17.8~20.5 | 0.94~0.96 | ||
阶段Ⅲ | 贫矿化石英-方解石脉 | L | 44 | 5~10 | -16.0~-2.0 | 132~262 | 3.4~19.4 | 1.02~1.15 |
Table 1 Results of microthermometric measurements for fluid inclusions in quartz in different ore stages at the Azhahada Cu-Bi deposit
阶段 | 样品描述 | 包裹体类型 | N | 大小/μm | Tm,ice/℃ | Th/℃ | 盐度w(NaCleq)/% | 密度/(g·cm-3) |
---|---|---|---|---|---|---|---|---|
阶段Ⅰ | 石英-黄铁矿-黄铜矿脉 | L | 38 | 4~15 | -19.7~-6.0 | 229~410 | 9.2~22.2 | 1.06~1.16 |
V | 10 | 5~12 | -19.8~-12.0 | 224~427 | 16.0~22.4 | 1.12~1.16 | ||
阶段Ⅱ | 石英-多金属硫化物- 自然铋脉 | L | 36 | 4~14 | -18.5~-7.0 | 180~361 | 10.5~21.3 | 1.08~1.16 |
V | 6 | 5~12 | -17.4~-14.0 | 245~343 | 17.8~20.5 | 0.94~0.96 | ||
阶段Ⅲ | 贫矿化石英-方解石脉 | L | 44 | 5~10 | -16.0~-2.0 | 132~262 | 3.4~19.4 | 1.02~1.15 |
样品编号 | 矿物 | δ13CV-PDB/‰ | δ18OV-PDB/‰ | δ18OV-SMOW/‰ |
---|---|---|---|---|
16SME-46-1 | 方解石 | -1.5 | -18.8 | 11.5 |
16SME-46-2 | 方解石 | -1.4 | -18.8 | 11.5 |
16SME-69-1 | 方解石 | -6.6 | -32.1 | -2.4 |
16SME-69-2 | 方解石 | -6.7 | -32.3 | -2.4 |
Table 2 Carbon and oxygen isotope compositions of calcite from the Azhahada Cu-Bi deposit.
样品编号 | 矿物 | δ13CV-PDB/‰ | δ18OV-PDB/‰ | δ18OV-SMOW/‰ |
---|---|---|---|---|
16SME-46-1 | 方解石 | -1.5 | -18.8 | 11.5 |
16SME-46-2 | 方解石 | -1.4 | -18.8 | 11.5 |
16SME-69-1 | 方解石 | -6.6 | -32.1 | -2.4 |
16SME-69-2 | 方解石 | -6.7 | -32.3 | -2.4 |
样品编号 | 矿物 | 样品描述 | δ34SV-CDT/‰ |
---|---|---|---|
16SME-28 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 6.8 |
16SME-29 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 8.0 |
16SME-31 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 6.3 |
16SME-32 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 9.5 |
16SME-33 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 5.4 |
16SME-51 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 4.5 |
16SME-52 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 5.3 |
16SME-53 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 7.1 |
16SME-56 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 1.3 |
16SME-57 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 1.4 |
Table 3 Sulfur isotope compositions of pyrite from the Azhahada Cu-Bi deposit
样品编号 | 矿物 | 样品描述 | δ34SV-CDT/‰ |
---|---|---|---|
16SME-28 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 6.8 |
16SME-29 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 8.0 |
16SME-31 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 6.3 |
16SME-32 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 9.5 |
16SME-33 | 黄铁矿 | 阶段Ⅰ自形粗粒黄铁矿 | 5.4 |
16SME-51 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 4.5 |
16SME-52 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 5.3 |
16SME-53 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 7.1 |
16SME-56 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 1.3 |
16SME-57 | 黄铁矿 | 阶段Ⅱ细粒黄铁矿 | 1.4 |
样品编号 | 矿物 | 208Pb/204Pb | 2σ | 207Pb/204Pb | 2σ | 206Pb/204Pb | 2σ |
---|---|---|---|---|---|---|---|
16SME-28 | 黄铁矿 | 38.090 | 0.009 | 15.569 | 0.003 | 18.299 | 0.004 |
16SME-29 | 黄铁矿 | 38.081 | 0.008 | 15.579 | 0.003 | 18.270 | 0.002 |
16SME-31 | 黄铁矿 | 38.146 | 0.006 | 15.561 | 0.003 | 18.383 | 0.003 |
16SME-32 | 黄铁矿 | 38.229 | 0.007 | 15.602 | 0.002 | 18.357 | 0.002 |
16SME-33 | 黄铁矿 | 38.172 | 0.005 | 15.585 | 0.002 | 18.350 | 0.003 |
Table 4 Lead isotope compositions of pyrite from the Azhahada Cu-Bi deposit
样品编号 | 矿物 | 208Pb/204Pb | 2σ | 207Pb/204Pb | 2σ | 206Pb/204Pb | 2σ |
---|---|---|---|---|---|---|---|
16SME-28 | 黄铁矿 | 38.090 | 0.009 | 15.569 | 0.003 | 18.299 | 0.004 |
16SME-29 | 黄铁矿 | 38.081 | 0.008 | 15.579 | 0.003 | 18.270 | 0.002 |
16SME-31 | 黄铁矿 | 38.146 | 0.006 | 15.561 | 0.003 | 18.383 | 0.003 |
16SME-32 | 黄铁矿 | 38.229 | 0.007 | 15.602 | 0.002 | 18.357 | 0.002 |
16SME-33 | 黄铁矿 | 38.172 | 0.005 | 15.585 | 0.002 | 18.350 | 0.003 |
[1] | 王继春, 王银宏, 张梅, 等. 内蒙古高尔旗银铅锌矿区花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 现代地质, 2016, 30(5): 961-980. |
[2] | 王守光, 黄占起, 苏新旭, 等. 一条值得重视的跨国境成矿带:南戈壁—东乌旗铜多金属成矿带[J]. 地学前缘, 2004, 11(1): 249-255. |
[3] | 聂凤军, 江思宏, 张义, 等. 中蒙边境及邻区斑岩型铜矿床地质特征及成因[J]. 矿床地质, 2004, 23(2): 176-189. |
[4] | 刘鹤. 二连浩特—东乌旗成矿带中段晚中生代银铅锌成矿系统[D]. 北京:中国地质大学(北京), 2015. |
[5] |
WANG Y H, ZHANG F F, LIU J J, et al. Genesis of the Wurinitu W-Mo deposit, Inner Mongolia, Northeast China: constraints from geology, fluid inclusions and isotope systematics[J]. Ore Geology Reviews, 2018, 94: 367-382.
DOI URL |
[6] |
ZHANG F F, WANG Y H, LIU J J, et al. Ore genesis and hydrothermal evolution of the Wulandele Mo deposit, Inner Mongolia, Northeast China: evidence from geology, fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 2018, 93: 181-199.
DOI URL |
[7] | 陈进全, 徐兆文, 陈兴高, 等. 内蒙古哈达特陶勒盖铅锌矿床成矿物理化学条件研究[J]. 地质学报, 2013, 87(3): 375-383. |
[8] | 郭灵俊, 章培春, 袁伟明, 等. 内蒙古高尔旗中-大型银铅锌多金属矿床地质特征[J]. 西部资源, 2015(2): 195-198, 201. |
[9] | 李蒙文. 天山—兴蒙造山带中段内生金属矿床成矿系列及成矿预测[D]. 北京:中国地质科学院, 2006. |
[10] |
ZHANG W Y, NIE F J, LIU S W, et al. Characteristics and genesis of mineral deposits in East Ujimqin Banner, western segment of the Great Xing’an Mountains, NE China[J]. Journal of Asian Earth Sciences, 2015, 97(1): 459-471.
DOI URL |
[11] | 聂凤军, 张万益, 杜安道, 等. 内蒙古朝不楞夕卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义[J]. 地球学报, 2007, 28(4): 315-323. |
[12] |
WU C, WANG B R, ZHOU Z G, et al. The relationship between magma and mineralization in Chaobuleng iron polymetallic deposit, Inner Mongolia[J]. Gondwana Research, 2017, 45: 228-253.
DOI URL |
[13] |
LENG C B, ZHANG X C, HUANG Z L, et al. Geology, Re-Os ages, sulfur and lead isotopes of the Diyanqinamu porphyry Mo deposit, Inner Mongolia, NE China[J]. Economic Geology, 2015, 110(2): 557-574.
DOI URL |
[14] | 翟裕生, 邓军, 李晓波. 区域成矿学[M]. 北京: 地质出版社, 1999. |
[15] | 内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996: 15-51. |
[16] | 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991: 133-138. |
[17] | 郭灵俊, 郝俊峰, 杨波, 等. 中蒙边境阿巴嘎段铅锌矿集区地质特征和找矿思路[J]. 中国地质, 2012, 39(3): 784-793. |
[18] | 郭灵俊. 内蒙古阿巴嘎北部矿集区晚古生代成矿系统及矿产预测[R]. 北京:中国地质大学(北京),2017. |
[19] |
BODNAR R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.
DOI URL |
[20] | BROWN P E. Flincor: a microcomputer program for the reduction and investigation of fluid-inclusion data[J]. American Mineralogist, 1989, 74: 1390-1393. |
[21] | ROEDDER E. Fluid inclusions[J]. Reviews in Mineralogy, Mineralogist Society of America, 1984, 12: 644. |
[22] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 132-208. |
[23] | FRIEDMAN I, O'NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest[M]// FLEISCHER M. Data of geochemistry. US Department of the Interior, 1977. |
[24] | HOEFS J. Stable isotope geochemistry[M]. 6th ed. Berlin, Heidelberg: Springer-Verlag, 2009: 1-285. |
[25] | HOEFS J. Stable isotope geochemistry[M]. 3rd ed. Berlin, Heidelberg: Springer-Verlag, 1997: 1-201. |
[26] | 刘家军, 何明勤, 李志明, 等. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质, 2004, 23(1): 1-10. |
[27] | 曹晓峰, 吕新彪, 张平, 等. 新疆中天山东部彩霞山铅锌矿床稳定同位素特征及成因探讨[J]. 中南大学学报(自然科学版), 2013, 44(2): 662-672. |
[28] |
DENG J, WANG Q F. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274.
DOI URL |
[29] | ROLLINSON H R. Using geochemical data: evaluation, presentation, interpretation[M]. New York: John Wiley & Sons, 1993: 1-352. |
[30] | 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 1-238. |
[31] | 张德会, 赵仑山, 张本仁. 地球化学[M]. 北京: 地质出版社, 2013: 416-418. |
[32] | 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000: 218-232. |
[33] | OHMOTO H, RYE R O. Isotopes of sulfur and carbon[M]// BARNES H L. Geochemistry of hydrothermal ore deposits. 2nd ed. New York: Wiley, 1979: 509-567. |
[34] |
ZARTMAN R E, DOE B R. Plumbotectonics: the model[J]. Tectonophysics, 1981, 75(1/2): 135-162.
DOI URL |
[35] | 张锋, 李志丹, 段明, 等. 内蒙古东乌旗巴彦都兰铜矿床地质和地球化学特征及其意义[J]. 地质找矿论丛, 2017, 32(2): 161-171. |
[36] | 向安平, 陈毓川, 佘宏全, 等. 内蒙古东乌旗达亚纳钨-钼矿成岩成矿时代及其岩体地球化学研究[J]. 地质学报, 2018, 92(1): 107-124. |
[37] | 聂凤军, 胡朋, 江思宏, 等. 中蒙边境沙麦—玉古兹尔地区钨和钨(钼)矿床地质特征,形成时代和成因机理[J]. 地球学报, 2010, 31(3): 383-394. |
[38] | 李俊建, 付超, 唐文龙, 等. 内蒙古东乌旗沙麦钨矿床的成矿时代[J]. 地质通报, 2016, 35(4): 524-530. |
[39] | BARNES H L. Solubilities of ore minerals[M]// BARNES H L. Geochemistry of hydrothermal ore deposits. 2nd ed. New York: Wiley, 1979: 404-460. |
[40] |
RUAYA J R. Estimation of instability constants of metal chloride complexes in hydrothermal solutions up to 300 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 1983-1996.
DOI URL |
[41] | 肖渊甫, 王强, 李志军, 等. 西藏尕尔穷铜金矿床铋矿物的发现及意义[J]. 地质学报, 2012, 86(7): 1106-1112. |
[42] | SEWARD T M, WILLIAMS-JONES A E, MIGDISOV A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[J]. Treatise on Geochemistry, 2014, 13: 29-57. |
[43] |
ULRICH T, HEINRICH C A. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina[J]. Economic Geology, 2001, 96(8): 1719-1742.
DOI URL |
[44] |
LANDTWING M R, PETTKE T, HALTER W E, et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 229-243.
DOI URL |
[45] |
REDMOND P B, EINAUDI M T, INAN E E, et al. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 2004, 32(3): 217.
DOI URL |
[46] |
WANG Y H, ZHANG F F, LIU J J, et al. Ore genesis and hydrothermal evolution of the Donggebi porphyry Mo deposit, Xinjiang, Northwest China: evidence from isotopes (C, H, O, S, Pb), fluid inclusions, and molybdenite Re-Os dating[J]. Economic Geology, 2018, 113(2): 463-488.
DOI URL |
[47] |
HEINRICH C A. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1): 363-387.
DOI URL |
[48] |
REED M H, PALANDRI J. Sulfide mineral precipitation from hydrothermal fluids[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 609-631.
DOI URL |
[49] | BRIMHALL G H, CRERAR D A. Ore fluids: magmatic to supergene[J]. Reviews in Mineralogy and Geochemistry, 1987, 17: 235-322. |
[50] | 张德会. 成矿流体中金属沉淀机制研究综述[J]. 地质科技情报, 1997, 16(3): 53-58. |
[1] | HONG Tao, ZHAI Mingguo, WANG Yuejun, LIU Xingcheng, XU Xingwang, GAO Jun, HU Mingxi, MA Jing. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study [J]. Earth Science Frontiers, 2023, 30(5): 93-105. |
[2] | FAN Fu, HOU Xianhua, ZHENG Mianping, MENG Fanwei, YANG Zhenjing, MIAO Qing. Homogenization temperature of fluid inclusions in Early-Middle Pleistocene halite from Liang Hole ZK02 in Dalangtan area, Qaidam Basin and its constraints on potash mineralization [J]. Earth Science Frontiers, 2021, 28(6): 105-114. |
[3] | TANG Li, ZHANG Shouting, WANG Liang, PEI Qiuming, FANG Yi, CAO Huawen, ZOU Hao, YIN Shaobo. Exploration of concealed fluorite deposit in shallow overburden areas: A case study in Elimutai, Inner Mongolia, China [J]. Earth Science Frontiers, 2021, 28(3): 208-220. |
[4] | OUYANG Xin, ZHANG Yongmei, GU Xuexiang, LIU Li, WANG Luzhi, GAO Liye. Characteristics of fluid inclusions in and metallogensis of the Zhuanshanzi gold deposit in Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(2): 320-332. |
[5] | YU Xiaoyan, ZHENG Yuyu, ZHANG Tingya, GUO Hongshu, LONG Zhengyu, WAN Jiaxin, ZHANG Cun. The genesis of color zonation of emerald from Dayakou, Yunnan Province: implication for multi-stage mineralization [J]. Earth Science Frontiers, 2020, 27(5): 116-125. |
[6] | LIU Hong, ZHANG Linkui, HUANG Hanxiao, LI Guangming, OUYANG Yuan, YU Huai, LIANG Wei, ZHANG Hongming, CHEN Xiaoping. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: fluid inclusion and H-O isotope evidence [J]. Earth Science Frontiers, 2020, 27(4): 49-65. |
[7] | ZHANG Dayu, FU Xiang, WEI Ouxiang, YE Longxiang, JIANG Hua, ZHANG Yong, XIN Houtian. Discovery of the Silurian andesitic porphyry in the Xiaohulishan Mo-polymetallic deposit, the Beishan district, Inner Mongolia, and its geological significance [J]. Earth Science Frontiers, 2020, 27(3): 222-238. |
[8] | PENG Runmin, WANG Jianping. Confirmation and metallogenesis of the Neoproterozoic rift in the western section of the northern margin of the North China Craton [J]. Earth Science Frontiers, 2020, 27(2): 420-441. |
[9] | ZHANG Yuqing, ZHANG Changhou, HOU Liyu, ZHANG Yipeng, HUANG Yingzhu, CHEN Hanlin, CHANG Lizhong. Superposed folding since the Permian on both sides of the Xar Moron Suture, southeastern Inner Mongolia: implications for syn- and post-collision geodynamic process [J]. Earth Science Frontiers, 2019, 26(2): 264-280. |
[10] | XU Qiangwei,WANG Pin,ZHONG Jun,WANG Chengming,ZHENG Yi,FANG Jing. Study of fluid inclusions and ore genetic type of the Changlingzi deposit, Keshiketeng County, Inner Mongolia [J]. Earth Science Frontiers, 2018, 25(5): 151-166. |
[11] | LIU Ruilin,WU Guang,LI Tiegang,CHEN Gongzheng,WU Liwen,ZHANG Peichun,ZHANG Tong,JIANG Biao,LIU Wenyuan. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing an Range and their geological significance [J]. Earth Science Frontiers, 2018, 25(5): 183-201. |
[12] | XU Bei,XU Yan,LI Jin,LI Qunsheng. Age of the Ondor Sum Group in western Inner Mongolia and its position in the Central Asia Orogenic Belt. [J]. Earth Science Frontiers, 2016, 23(6): 120-127. |
[13] | . Characteristics of oreforming fluid and mineralization process of the Yangla copper deposit, Yunnan. [J]. Earth Science Frontiers, 2013, 20(1): 82-91. |
[14] | YANG Zhong-Fang, JIA Hua-Ji, TU Chao, HOU Jing-Xie, FENG Hai-Yan. Soil carbon pool in the northeast Inner Mongolia and its influencing factors. [J]. Earth Science Frontiers, 2011, 18(6): 1-10. |
[15] | GE Meng-Chun, ZHOU Wen-Xiao, XU Xiang, SUN Dun-Dun, BAO Jian-Quan, WANG Shi-Hai. Dissolution and supracrustal rocks dating of Xilin Gol Complex,Inner Mongolia,China. [J]. Earth Science Frontiers, 2011, 18(5): 196-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||