

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 303-322.DOI: 10.13745/j.esf.sf.2025.8.99
Previous Articles Next Articles
JIANG Xiuwei1(
), LAI Shaocong2,*(
), ZHU Yu2,3, QIN Jiangfeng2, ZHU Renzhi2, LIU Min2, YANG Hang2, YANG Zhen2, XUE Wenbin2
Received:2024-11-01
Revised:2025-01-18
Online:2025-11-25
Published:2025-11-12
Contact:
LAI Shaocong
CLC Number:
JIANG Xiuwei, LAI Shaocong, ZHU Yu, QIN Jiangfeng, ZHU Renzhi, LIU Min, YANG Hang, YANG Zhen, XUE Wenbin. The petrogenesi and deep dynamic implications of Middel-Late Neoproterozoic intermediate-mafic rocks on southwestern margin of Yangtze Block[J]. Earth Science Frontiers, 2025, 32(6): 303-322.
Fig.7 Diagrams of (a, c) whole rocks chondrite normalized REE patterns and (b, d) primitive mantle normalized incompatible element variation. Modified after [25].
Fig.10 Diagrams of mantle metasomatism of ultramafic-mafic and intermediate intrusions. Modified after [4,29-30]. (a)—(Ta/La)N vs(Hf/Sm)N([29]);(b)—Nb/Y vs Ba/La;(c)—Th vs U/Th;(d)—Th/Zr vs Nb/Zr([30]);(e)—εNd(t) vs εHf(t)([4]);(f)—全岩(87Sr/86Sr)i vs εNd(t)。
Fig.11 Tectonic diagrams of of Nb-Ti and arc ultramafic-mafic and intermediate intrusions. Modified after [36-38]. (a)—U-Pb vs V/Sc([36]);(b)—Ti vs V([37]);(c)—Y/15-La/10-Nb/8;(d)—Hf/3-Th-Ta图解([38])。
| [1] | ZHAO G C, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222/223: 13-54. |
| [2] | 朱强, 施珂, 吴礼彬, 等. 扬子板块新元古代中期的持续俯冲作用: 来自南华纪岛弧火山岩年代学和岩石地球化学新证据[J]. 地学前缘, 2020, 27(4): 17-32. |
| [3] | 刘树文, 杨恺, 李秋根, 等. 新元古代宝兴杂岩的岩石成因及其对扬子西缘构造环境的制约[J]. 地学前缘, 2009, 16(2): 107-118. |
| [4] | ZHAO J H, LI Q W, LIU H, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth Science Reviews, 2018, 187: 1-18. |
| [5] | ZHAO J H, ZHOU M F, WU Y B, et al. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton[J]. Contributions to Mineralogy Petrology, 2019, 174: 36. |
| [6] | ZHU Y, LAI S C, XIE W L, et al. Neoproterozoic tectonic transition from subduction to back-arc extension along the western Yangtze Block, South China: petrological evidence of Nb-enriched basalts and arc-type intrusive rocks[J]. Gondwana Research, 2023, 122: 163-180. |
| [7] | LI H B, ZHANG Z, SANTOSH M, et al. Geochronological, geochemical and Sr-Nd isotopic fingerprinting of Neoproterozoic mafic dykes in the western margin of the Yangtze block, SW China: implications for Rodinia supercontinent breakup[J]. Precambrian Research, 2019, 105371. |
| [8] | 刘磊鑫, 李江海, 马昌明. 扬子板块、澳大利亚板块、印度板块在新元古代晚期(750-540 Ma)古板块再造: 来自古地磁制约[J]. 地学前缘, 2023, 30(2): 154-162. |
| [9] | 刘俊来, 王安建, 曹淑云, 等. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵[J]. 岩石学报, 2008, 24(3): 413-420. |
| [10] | 冀磊, 刘福来, 王舫. 点苍山—哀牢山变质杂岩带中、北段多期花岗质岩浆事件及其构造意义[J]. 岩石学报, 2017, 33(9): 2957-2974. |
| [11] | WANG Y J, ZHOU Y Z, CAI Y F, et al. Geochronological and geochemical constraints on the petrogenesis of the Ailaoshan granitic and migmatite rocks and its implications on Neoproterozoic subduction along the SW Yangtze Block[J]. Precambrian Research, 2016, 283: 106-124. |
| [12] | 云南地质矿产局. 云南省1∶200 000地质填图[M]. 元阳幅, 1976. |
| [13] | 翟明国, 从柏林, 乔广生, 等. 中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学[J]. 岩石学报, 1990(4): 1-11. |
| [14] | CAI Y F, WANG Y J, CAWOOD P A, et al. Neoproterozoic subduction along the Ailaoshan zone, South China: geochronological and geochemical evidence from amphibolite[J]. Precambrian Research, 2014, 245: 13-28. |
| [15] | 王中良, 林木森, 周瑞辉. 滇东南荒田钨矿床白钨矿原位U-Pb年代学、Sr同位素组成及成矿启示[J]. 现代地质, 2025, 39(1): 133-145. |
| [16] | 张少颖, 和文言, 肖仪武. 镁铁质岩浆周期性补给对云南普朗斑岩Cu-Au矿床的制约: 能量约束下热力学模拟[J]. 现代地质, 2024, 38(4): 922-933. |
| [17] | YUAN H L, GAO S, LIU X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards Geoanalytical Research, 2004, 28(3): 353-370. |
| [18] | JOCHUM K P, NOHL U. Reference materials in geochemistry and environmental research and the GeoReM database[J]. Chemical Geology, 2008, 253: 50-53. |
| [19] | LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. |
| [20] | YUAN H L, GAO S, DAI M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-118. |
| [21] | LI J Y, WANG X L, WANG D, et al. Pre Neoproterozoic continental growth of the Yangtze Block: from continental rifting to subduction-accretion[J]. Precambrian Research, 2021, 355: 106081. |
| [22] | LEBAS M J, MAITRE L R W, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27: 745-750. |
| [23] | ROBERT M P, CLEMENS J D. Origin of high potassium, calc-alkaline, I-type granitoids[J]. Geology, 1993, 21: 825-828. |
| [24] | KEPEZHINSKAS P, DEFANT M J, DRUMMOND M S. Progressive enrichment of Island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229. |
| [25] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London, Specical Publication, 1989, 42: 313-345. |
| [26] | ZHAO J H, ZHOU M F, ZHENG J P. Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China[J]. Lithos, 2010, 115: 177-189. |
| [27] | HIESS J, BENNETT V C, NUTMAN A P, et al. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust[J]. Geochimica et Cosmochimica Acta, 2009, 73: 4489-4516. |
| [28] | HAWKESWORTH C J, TURNER S P, MCDERMOTT F, et al. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust[J]. Science, 1997, 276: 551-555. |
| [29] | LAFLÈCHE M R, CAMIRE G, JENNER G A. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada[J]. Chemical Geology, 1988, 148: 115-136. |
| [30] | EVANS B W, HATTORI K, BARONNET A. SERPENTINITE: what, why, where?[J]. Elements, 2013, 9(2): 99-106. |
| [31] | TURNER S, HAWKESWORTH C, ROGERS N, et al. 238U-230Th disequilibrium, magma petrogenesis, and flux rates beneath the depleted Tonga Kermadec island arc[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4855-4884. |
| [32] | HASTIE A R, MITCHELL S F, KERR A C, et al. Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts?[J]. Geochimica et Cosmochimica Acta, 2011, 75: 5049-5072. |
| [33] | CHAUVEL C, LEWIN E, CARPENTIER M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1: 64-67. |
| [34] | MA L, WANG Q, WYMAN D A, et al. Late cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349/350: 54-70. |
| [35] | ZHAO J H, ZHOU M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1): 27-47. |
| [36] | ZHANG Y, LIANG X, WANG C, et al. Experimental constraints on the partial melting of sediment metasomatized lithospheric mantle in subduction zones[J]. American Mineralogist, 2020, 105: 1191-1203. |
| [37] | SHINJO R, CHUNG S L, KATO Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research: Solid Earth, 1999, 104: 10591-10608. |
| [38] | WOOD D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50: 11-30. |
| [39] | 李光洁, 陈永清, 尚志, 等. 扬子地块西缘峨山新元古代高分异Ⅰ型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39. |
| [40] | 李路顺, 汪泽成, 肖安成, 等. 扬子板块北缘新元古代盆地结构与马槽园群归属研究[J]. 地学前缘, 2022, 29(6): 291-304. |
| [41] | LEE C T A, LEEMAN W P, CANIL D, et al. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions[J]. Journal of Petrology, 2005, 46: 2313-2336. |
| [42] | 李欣懿, 董栩含, 黄慧, 等. 中国东部大地幔楔氧化的证据和机理[J]. 现代地质, 2025, 39(2): 239-247. |
| [43] | ZHENG Y F, CHEN R X, XU Z, et al. The transport of water in subduction zones[J]. Science China: Earth Science, 2016, 59: 651-682. |
| [44] | ZHANG Y Y, YUAN C, SUN M, et al. Two late Carboniferous belts of Nb-enriched mafic magmatism in the Eastern Tianshan: heterogeneous mantle sources and geodynamic implications[J]. GSA Bulletin, 2020, 132(9/10): 1863-1880. |
| [45] | ZHANG J W, LIAO M Y, SANTOSH M, et al. Middle Tonian calc-alkaline picrites, basalts, and basaltic andesites from the Jiangnan orogen: evidence for rear-arc magmatism[J]. Precambrian Research, 2020, 350(1), 105943. |
| [46] | SHENG Z J S. Dynamics of back-arc extension controlled by subducting slab retreat: insights from 2d thermo-mechanical modelling[J]. Geological Journal, 2019, 54(6). |
| [47] | 马昌前, 孙洋, 张超. 大别山鲁家寨花岗岩地球化学、锆石年代学和Hf同位素特征: 扬子克拉通北东缘新元古代岩浆活动证据[J]. 地学前缘, 2011, 18(2): 85-99. |
| [48] | ZHAO J H, ZHOU M F, YAN D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302. |
| [49] | ZHU Y, LAI S C, QIN J F, et al. Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China[J]. Journal of Asian Earth Science, 2019, 183. |
| [50] | HU P Y, ZHAI Q G, WANG J, et al. U-Pb zircon geochronology, geochemistry, and Sr-Nd-Hf-O isotopic study of middle Neoproterozoic magmatic rocks in the Kangdian rift, south China: slab rollback and back arc extension at the northwestern edge of the Rodinia[J]. Precambrian Research, 2020, 347, 105863. |
| [51] | ZHAO J H, ZHOU M F. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China[J]. Journal of Geology, 2007, 115: 675-689. |
| [1] | LUO Zhaohua. Genesis of picrites in Sichuan Kuangshanliangzi: Constraints from olivine composition profile [J]. Earth Science Frontiers, 2025, 32(6): 286-302. |
| [2] | GAO Heting, LI Xi, ZHU Guangyou, LI Sheng, WANG Ruiling, HOU Jiakai, ZHANG Jiezhi, ZHENG Kaihang. A review of dolomite genesis analysis based on crystal nucleation-growth thermodynamic and kinetic [J]. Earth Science Frontiers, 2025, 32(5): 165-189. |
| [3] | PAN Shaojun, ZHANG Jianfang, CHEN Xiaoyou, MA Junxiang, CAI Xiaoliang, HUANG Guocheng. The formation age and origin of syenite granite in Shengsi, Zhejiang Province: Constraints from zircon U-Pb ages, rock geochemistry and Hf isotopes [J]. Earth Science Frontiers, 2025, 32(2): 430-444. |
| [4] | LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent [J]. Earth Science Frontiers, 2024, 31(4): 237-257. |
| [5] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
| [6] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
| [7] | LI Guangjie, CHEN Yongqing, SHANG Zhi, LIU Shibo. Geochemical characteristics and petrogenesis of the Neoproterozoic Eshan highly fractionated I-type granites, western Yangtze block [J]. Earth Science Frontiers, 2024, 31(3): 20-39. |
| [8] | LIU Ran, ZHU Bei, QIU Nansheng, LI Ya, WANG Wei, PEI Senqi. Volcaniclastic architectures in the Chengdu-Jianyang Area of the Emeishan Large Igneous Province: Identification, Generation Mechanism Interpretations, and Petroleum Reservoir Impact Assessment [J]. Earth Science Frontiers, 2024, 31(3): 337-351. |
| [9] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
| [10] | ZHOU Yuxi, SHI Yu, HUANG Chunwen, LIU Xijun, LAN Yuanchun, TANG Yuanyuan, WENG Boyin. Petrogenesis and tectonic significance of Caledonian I-Type granitoids in the Gulong and Liandong plutons in southeastern Guangxi [J]. Earth Science Frontiers, 2024, 31(2): 224-248. |
| [11] | CHEN Xu, FAN Honghai, CHEN Donghuan, CHEN Jinyong, WANG Shengyun. Genesis of and uranium mineralization in leucogranite, Rossing, Namibia [J]. Earth Science Frontiers, 2023, 30(5): 59-73. |
| [12] | HUANG Chunmei, LI Guangming, FU Jiangang, LIANG Wei, ZHANG Zhi, WANG Yiyun. Early Miocene leucogranitic magmatism in Cuonadong, southern Tibet: Constraints from whole-rock geochemical and mineralogical characteristics [J]. Earth Science Frontiers, 2023, 30(5): 74-92. |
| [13] | LI Xi, ZHU Guangyou, LI Tingting, AI Yifei, ZHANG Yan, WANG Shan, CHEN Zhiyong, TIAN Lianjie. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence [J]. Earth Science Frontiers, 2023, 30(4): 352-375. |
| [14] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
| [15] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||