Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 165-189.DOI: 10.13745/j.esf.sf.2025.3.71
Previous Articles Next Articles
GAO Heting1(), LI Xi1, ZHU Guangyou1,*(
), LI Sheng1, WANG Ruiling1, HOU Jiakai1,2, ZHANG Jiezhi1, ZHENG Kaihang1
Received:
2024-09-02
Revised:
2025-03-21
Online:
2025-09-25
Published:
2025-10-14
Contact:
ZHU Guangyou
CLC Number:
GAO Heting, LI Xi, ZHU Guangyou, LI Sheng, WANG Ruiling, HOU Jiakai, ZHANG Jiezhi, ZHENG Kaihang. A review of dolomite genesis analysis based on crystal nucleation-growth thermodynamic and kinetic[J]. Earth Science Frontiers, 2025, 32(5): 165-189.
晶体结构参数 | 含义 | 表示符号/类型 | 指示意义 |
---|---|---|---|
有序度 | 晶体中原子排列 有序的情况 | δ=I(015)/I(110),有序度越高,晶体生长过程中的环境条件越稳定,反之则可能表示环境条件的剧烈变化 | 指示形成环境、流体来源、成因、成岩演化和石油地质研究 |
晶胞参数 | 晶体中最小的单元 | a、b、c,微量元素的混入会改变参数值,理想白云石的a=b=4.806 9 Å,c=16.003 4 Å | 直接反映晶体中结构特征,判断白云石晶体形成环境 |
晶面间距 | 晶体中相邻晶面 之间的距离 | d,通常会计算d104晶面间距 | 判断白云石的形成环境和成因 |
晶格缺陷 | 晶体中原子排列 不规则的现象 | 点缺陷、线缺陷、面缺陷和体缺陷 | 反映晶体形成环境、形成和生长过程 |
Table 1 Characterisation of crystal structure parameters
晶体结构参数 | 含义 | 表示符号/类型 | 指示意义 |
---|---|---|---|
有序度 | 晶体中原子排列 有序的情况 | δ=I(015)/I(110),有序度越高,晶体生长过程中的环境条件越稳定,反之则可能表示环境条件的剧烈变化 | 指示形成环境、流体来源、成因、成岩演化和石油地质研究 |
晶胞参数 | 晶体中最小的单元 | a、b、c,微量元素的混入会改变参数值,理想白云石的a=b=4.806 9 Å,c=16.003 4 Å | 直接反映晶体中结构特征,判断白云石晶体形成环境 |
晶面间距 | 晶体中相邻晶面 之间的距离 | d,通常会计算d104晶面间距 | 判断白云石的形成环境和成因 |
晶格缺陷 | 晶体中原子排列 不规则的现象 | 点缺陷、线缺陷、面缺陷和体缺陷 | 反映晶体形成环境、形成和生长过程 |
白云石类型 | 晶体结构参数特征 | 沉积环境 | 研究实例 |
---|---|---|---|
原生沉积 白云石 | 晶形相对规则,多呈自形-半自形;晶体粒度以泥晶-粉晶为主,一般泥晶白云石粒度小于4 μm,粉晶白云石粒度在4~10 μm;有序度较差,一般在0.3~0.6之间;晶胞参数接近理想白云石值(a=4.80 Å,c=16.02 Å);晶面间距较大,且稳定;晶体结构较为完整,晶格缺陷较少。 | 指示其在相对稳定、低能的沉积环境中形成,如温暖浅海、盐湖等沉积环境。 | [ |
次生交代 白云石 | 晶形常不规则,多为它形;晶体粒度变化大,可从细晶到粗晶,常见中-粗晶(大于10 μm);有序度值较高,一般在0.8~1.0之间;晶胞参数偏离理想值,a值可能增大或减小,c值也会相应改变;晶面间距变化差异大;存在较多晶格缺陷。 | 指示其形成受后期热液、卤水等交代作用影响而形成,如热液活动频繁区域、岩浆岩与围岩接触带和断裂构造附近。 | [ |
Table 2 Correlation of crystalline structure parameters of diverse dolomite types with their respective formation environments
白云石类型 | 晶体结构参数特征 | 沉积环境 | 研究实例 |
---|---|---|---|
原生沉积 白云石 | 晶形相对规则,多呈自形-半自形;晶体粒度以泥晶-粉晶为主,一般泥晶白云石粒度小于4 μm,粉晶白云石粒度在4~10 μm;有序度较差,一般在0.3~0.6之间;晶胞参数接近理想白云石值(a=4.80 Å,c=16.02 Å);晶面间距较大,且稳定;晶体结构较为完整,晶格缺陷较少。 | 指示其在相对稳定、低能的沉积环境中形成,如温暖浅海、盐湖等沉积环境。 | [ |
次生交代 白云石 | 晶形常不规则,多为它形;晶体粒度变化大,可从细晶到粗晶,常见中-粗晶(大于10 μm);有序度值较高,一般在0.8~1.0之间;晶胞参数偏离理想值,a值可能增大或减小,c值也会相应改变;晶面间距变化差异大;存在较多晶格缺陷。 | 指示其形成受后期热液、卤水等交代作用影响而形成,如热液活动频繁区域、岩浆岩与围岩接触带和断裂构造附近。 | [ |
动力学制约因素 | 制约机理 | 研究进展 |
---|---|---|
Mg2+的水合 作用 | Mg2+与水分子具有强键合作用,形成Mg2+水化壳,阻碍白云石生长。 | 类白云石矿物并未受到Mg2+水合作用的障碍,需重新评估Mg2+水合作用对白云石形成动力学制约情况。 |
溶液中$\mathrm{CO}_{3}^{2-}$ 的活性 | $\mathrm{CO}_{3}^{2-}$的含量极低,且只有极少数$\mathrm{CO}_{3}^{2-}$具有足够的动能穿透水化屏障,溶液中$\mathrm{CO}_{3}^{2-}$的活性会限制白云石的形成。 | 微生物、热化学的硫酸盐的还原反应可生成$\mathrm{CO}_{3}^{2-}$/$\mathrm{HCO}_{3}^{-}$,致使环境的碳酸盐碱度增加,有利于白云岩形成。$\mathrm{CO}_{3}^{2-}$的活性并不是导致白云石形成困难的主控因素。 |
硫酸盐 | $\mathrm{SO}_{4}^{2-}$和Mg2+会形成紧密的MgxSO4离子对,导致进入晶格中的Mg2+减少,阻碍继续白云石生长。 | 在低温下硫酸盐的抑制作用被高估,$\mathrm{SO}_{4}^{2-}$可起到催化作用促进白云石沉淀。 |
过饱和度 | 过饱和条件会形成有序层,晶体在长期过饱和条件下这些有序层无法再生长。 | 沉积体系中水化学的动荡过程(饱和-不饱和、盐度或pH波动等)是近地表有序白云石形成的有利条件。 |
阳离子有序化 过程 | 有序化过程中低温条件溶液的Ca2+、Mg2+和$\mathrm{CO}_{3}^{2-}$迁移至特定的晶格位置的速率很缓慢,限制了白云石有序生长的能力。 | 在白云石的早期生长阶段就可能存在某种程度的有序化。低温下较短时间内可生成一些类白云石结构矿物,且具备有序结构,缓慢阳离子有序化过程是否为抑制白云石形成的动力学因素还需进一步商榷。 |
成核位点 | 成核位点的有无决定了白云石在低温条件下的成核率。 | 微生物细胞表面也可为白云石的沉淀提供成核位点,也有学者发现细菌很难为矿物形成提供成核位点,仍需对微生物在低温白云石形成中的作用进行深入评估。 |
成核动力学 | 团簇临界尺寸自由能屏障控制成核速率。 | 白云石的成核势垒比方解石和文石的成核势垒低,白云石晶核加入显著缩短了白云化作用的时间,促进了白云石的生长,表明白云石的成核不受限制。 |
生长动力学 | 晶体生长方式(层生长、螺旋位错生长等)提供的生长位点,决定晶体生长速率。 | 在过饱和度和欠饱和度之间进行周期性的频繁切换可以加速白云石的生长。证明了溶解-重结晶合成有序白云石的方法是可行的,这为低温无机成因白云岩的形成提供了新思路。 |
Table 3 Kinetic constraints
动力学制约因素 | 制约机理 | 研究进展 |
---|---|---|
Mg2+的水合 作用 | Mg2+与水分子具有强键合作用,形成Mg2+水化壳,阻碍白云石生长。 | 类白云石矿物并未受到Mg2+水合作用的障碍,需重新评估Mg2+水合作用对白云石形成动力学制约情况。 |
溶液中$\mathrm{CO}_{3}^{2-}$ 的活性 | $\mathrm{CO}_{3}^{2-}$的含量极低,且只有极少数$\mathrm{CO}_{3}^{2-}$具有足够的动能穿透水化屏障,溶液中$\mathrm{CO}_{3}^{2-}$的活性会限制白云石的形成。 | 微生物、热化学的硫酸盐的还原反应可生成$\mathrm{CO}_{3}^{2-}$/$\mathrm{HCO}_{3}^{-}$,致使环境的碳酸盐碱度增加,有利于白云岩形成。$\mathrm{CO}_{3}^{2-}$的活性并不是导致白云石形成困难的主控因素。 |
硫酸盐 | $\mathrm{SO}_{4}^{2-}$和Mg2+会形成紧密的MgxSO4离子对,导致进入晶格中的Mg2+减少,阻碍继续白云石生长。 | 在低温下硫酸盐的抑制作用被高估,$\mathrm{SO}_{4}^{2-}$可起到催化作用促进白云石沉淀。 |
过饱和度 | 过饱和条件会形成有序层,晶体在长期过饱和条件下这些有序层无法再生长。 | 沉积体系中水化学的动荡过程(饱和-不饱和、盐度或pH波动等)是近地表有序白云石形成的有利条件。 |
阳离子有序化 过程 | 有序化过程中低温条件溶液的Ca2+、Mg2+和$\mathrm{CO}_{3}^{2-}$迁移至特定的晶格位置的速率很缓慢,限制了白云石有序生长的能力。 | 在白云石的早期生长阶段就可能存在某种程度的有序化。低温下较短时间内可生成一些类白云石结构矿物,且具备有序结构,缓慢阳离子有序化过程是否为抑制白云石形成的动力学因素还需进一步商榷。 |
成核位点 | 成核位点的有无决定了白云石在低温条件下的成核率。 | 微生物细胞表面也可为白云石的沉淀提供成核位点,也有学者发现细菌很难为矿物形成提供成核位点,仍需对微生物在低温白云石形成中的作用进行深入评估。 |
成核动力学 | 团簇临界尺寸自由能屏障控制成核速率。 | 白云石的成核势垒比方解石和文石的成核势垒低,白云石晶核加入显著缩短了白云化作用的时间,促进了白云石的生长,表明白云石的成核不受限制。 |
生长动力学 | 晶体生长方式(层生长、螺旋位错生长等)提供的生长位点,决定晶体生长速率。 | 在过饱和度和欠饱和度之间进行周期性的频繁切换可以加速白云石的生长。证明了溶解-重结晶合成有序白云石的方法是可行的,这为低温无机成因白云岩的形成提供了新思路。 |
Fig.8 Schematic representation showing the dependence of nucleation barrier ΔGC on the radius rc based on classical nucleation theory. Adapted from [138].
[1] | ZHU G Y, LI X, LI T T, et al. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian Dolomites in Tarim Basin[J]. Science China Earth Sciences, 2023, 66(2): 334-357. |
[2] | 杨志波, 季汉成, 鲍志东, 等. 白云石晶体结构和地球化学特征对沉积环境响应: 以扬子地台晚埃迪卡拉纪灯影组白云岩为例[J]. 地学前缘, 2024, 31(3): 68-79. |
[3] | 朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167-1190. |
[4] | ZHU G Y, HOU J K, REN R, et al. Tectonic-sedimentary responses to major geological events, source rock formation mechanisms, and resource potential at depths greater than 10000 m in the cratonic basins of China[J]. AAPG Bulletin, 2025, 109(4): 497-544. |
[5] | ZHU G Y, ZHANG Z Y, JIANG H, et al. Evolution of the Cryogenian cratonic basins in China, paleo-oceanic environment and hydrocarbon generation mechanism of ancient source rocks, and exploration potential in 10000 m-deep strata[J]. Earth-Science Reviews, 2023, 244: 104506. |
[6] | 韩月卿, 张军涛, 潘磊, 等. 川东南中二叠统茅口组白云岩特征与成因机理[J]. 地学前缘, 2023, 30(6): 45-56. |
[7] | PIMENTEL C, PINA C M. The formation of the dolomite-analogue norsethite:reaction pathway and cation ordering[J]. Geochimica et Cosmochimica Acta, 2014, 142: 217-223. |
[8] | GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment:a review[J]. Sedimentology, 2015, 62(6): 1749-1769. |
[9] | PIMENTEL C, PINA C M. Reaction pathways towards the formation of dolomite-analogues at ambient conditions[J]. Geochimica et Cosmochimica Acta, 2016, 178: 259-267. |
[10] | 李茜, 朱光有, 李婷婷, 等. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J]. 石油学报, 2022, 43(11): 1585-1603. |
[11] | 李茜, 朱光有, 李婷婷, 等. 塔里木盆地鹰山组白云岩成因与Mg同位素证据[J]. 地学前缘, 2023, 30(4): 352-375. |
[12] | 孟万斌, 武恒志, 李国蓉, 等. 川北元坝地区长兴组白云石化作用机制及其对储层形成的影响[J]. 岩石学报, 2014, 30(3): 699-708. |
[13] | CAI W K, LIU J H, ZHOU C H, et al. Structure, genesis and resources efficiency of dolomite: new insights and remaining enigmas[J]. Chemical Geology, 2021, 573: 120191. |
[14] | 马永生, 蔡勋育, 李慧莉, 等. 深层-超深层碳酸盐岩储层发育机理新认识与特深层油气勘探方向[J]. 地学前缘, 2023, 30(6): 1-13. |
[15] | WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81. |
[16] | 李茜, 朱光有, 张志遥. 超深层白云岩成因与规模储层控制因素: 以四川盆地震旦系灯影组和寒武系龙王庙组为例[J]. 中国科学: 地球科学, 2024, 54(7): 2389-2418. |
[17] | LI X, ZHU G Y, LI T T, et al. Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration: a case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin[J]. Applied Geochemistry, 2023, 148: 105540. |
[18] | 甯濛, 黄康俊, 沈冰. 镁同位素在“白云岩问题” 研究中的应用及进展[J]. 岩石学报, 2018, 34(12): 3690-3708. |
[19] | PINA C M, PIMENTEL C, CRESPO Á. Dolomite cation order in the geological record[J]. Chemical Geology, 2020, 547: 119667. |
[20] | 张杰, 寿建峰, 张天付, 等. 白云石成因研究新方法: 白云石晶体结构分析[J]. 沉积学报, 2014, 32(3): 550-559. |
[21] | DRITS V A, MCCARTY D K, SAKHAROV B, et al. New insight into structural and compositional variability in some ancient excess-Ca dolomite[J]. The Canadian Mineralogist, 2005, 43(4): 1255-1290. |
[22] | PENG B, LI Z X, LI G R, et al. Multiple dolomitization and fluid flow events in the Precambrian dengying formation of Sichuan basin, southwestern China[J]. Acta Geologica Sinica (English Edition), 2018, 92(1): 311-332. |
[23] | 张亦凡, 马怡飞, 姚奇志, 等. “白云石问题” 及其实验研究[J]. 高校地质学报, 2015, 21(3): 395-406. |
[24] | RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. A route for the direct crystallization of dolomite[J]. American Mineralogist, 2015, 100(5/6): 1172-1181. |
[25] | MERLINI M, CRICHTON W A, HANFLAND M, et al. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(34): 13509-13514. |
[26] | CHENG J R, MENG X Q, ZHANG E L, et al. An early Holocene primary dolomite layer of abiotic origin in lake sayram, central Asia[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096309. |
[27] | JIANG L, XU Z H, SHI S Y, et al. Multiphase dolomitization of a microbialite-dominated gas reservoir, the Middle Triassic Leikoupo Formation, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 180: 820-834. |
[28] | 郑剑锋, 刘禹, 朱永进, 等. 塔里木盆地乌什地区上震旦统奇格布拉克组地球化学特征及其地质意义[J]. 古地理学报, 2021, 23(5): 983-998. |
[29] | 宋金民, 罗平, 杨式升, 等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 2014, 41(4): 404-413, 437. |
[30] | 黄思静, QING H R, 胡作维, 等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义: 以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23(11): 2955-2962. |
[31] | LAND L S. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3/4): 361-368. |
[32] | DEELMAN J C, EINDHOVEN . Low-temperature nucleation of magnesite and dolomite[J]. Neues Jahrbuch Fur Mineralogie Monatshefte, 1999: 289-302. |
[33] | LIEBERMANN O. Synthesis of dolomite[J]. Nature, 1967, 213(5073): 241-245. |
[34] | CHEN C, ZHONG H T, WANG X Y, et al. Thermodynamic and kinetic studies of dolomite formation: a review[J]. Minerals, 2023, 13(12): 1479. |
[35] | PISKUNOVA N N. Non-reversibility of crystal growth anddissolution: nanoscale direct observations and kinetics of transition through the saturation point[J]. Journal of Crystal Growth, 2024, 631: 127614. |
[36] | FENTER P, ZHANG Z, PARK C, et al. Structure and reactivity of the dolomite (104)-water interface: new insights into the dolomite problem[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 566-579. |
[37] | ZHANG F F, XU H F, KONISHI H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97: 148-165. |
[38] | BERNINGER U N, SALDI G D, JORDAN G, et al. Assessing dolomite surface reactivity at temperatures from 40 to 120℃ by hydrothermal atomic force microscopy[J]. Geochimica et Cosmochimica Acta, 2017, 199: 130-142. |
[39] | 卯松, 章铁斌. 基于密度泛函理论的含$\mathrm{CO}_{3}^{2-}$缺陷白云石表面性质研究[J]. 矿冶工程, 2023, 43(2): 66-68, 73. |
[40] | 王泽宇, 乔占峰, 寿芳漪, 等. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程:来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611. |
[41] | 何宏平, 朱建喜, 陈锰, 等. 矿物结构与矿物物理研究进展综述(2011—2020年)[J]. 矿物岩石地球化学通报, 2020, 39(4): 697-713, 682. |
[42] | 张杰, BRIAN J, 张建勇. 不同埋藏深度交代白云石晶体结构及其对白云岩储层研究的意义[J]. 中国石油勘探, 2014, 19(3): 21-28. |
[43] | KIM J, KIMURA Y, PUCHALA B, et al. Dissolution enables dolomite crystal growth near ambient conditions[J]. Science, 2023, 382(6673): 915-920. |
[44] | KARVINEN S, HIRVA P, PAKKANEN T A. Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2[J]. Journal of Molecular Structure: THEOCHEM, 2003, 626(1/2/3): 271-277. |
[45] | ZHU G Y, WEI Z L, WU X Y, et al. New insights into the dolomitization and dissolution mechanisms of dolomite-calcite (104)/(110) crystal boundary: an implication to geologic carbon sequestration process[J]. Science of the Total Environment, 2023, 904: 166273. |
[46] | 杨博, 蔡忠贤, 赵文光. 白云岩岩石结构及演化[J]. 新疆石油地质, 2010, 31(3): 323-326. |
[47] | FUCHTBAUER H. Sediments and Sedimentary Rocks 1[M]. Stuttgart: E. Schweizerbart’sche, 1974. |
[48] | 钟倩倩, 黄思静, 邹明亮, 等. 碳酸盐岩中白云石有序度的控制因素: 来自塔河下古生界和川东北三叠系的研究[J]. 岩性油气藏, 2009, 21(3): 50-55. |
[49] | 曾理, 万茂霞, 彭英. 白云石有序度及其在石油地质中的应用[J]. 天然气勘探与开发, 2004, 27(4): 64-66, 72-85. |
[50] | LI W Q, BIALIK O M, WANG X M, et al. Effects of early diagenesis on Mg isotopes in dolomite: the roles of Mn(IV)-reduction and recrystallization[J]. Geochimica et Cosmochimica Acta, 2019, 250: 1-17. |
[51] | KACZMAREK S E, SIBLEY D F. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments:an alternative model for the geochemical evolution of natural Dolomites[J]. Sedimentary Geology, 2011, 240(1/2): 30-40. |
[52] | PINA C M, PIMENTEL C, CRESPO Á. The dolomite problem: a matter of time[J]. ACS Earth and Space Chemistry, 2022, 6(6): 1468-1471. |
[53] | KELL-DUIVESTEIN I J, BALDERMANN A, MAVROMATIS V, et al. Controls of temperature, alkalinity and calcium carbonate reactant on the evolution of dolomite and magnesite stoichiometry and dolomite cation ordering degree: an experimental approach[J]. Chemical Geology, 2019, 529: 119292. |
[54] | BALDERMANN A, DEDITIUS A P, DIETZEL M, et al. The role of bacterial sulfate reduction during dolomite precipitation: implications from Upper Jurassic platform carbonates[J]. Chemical Geology, 2015, 412: 1-14. |
[55] | ROSEN M R, MISER D E, STARCHER M A, et al. Formation of dolomite in the coorong region, south Australia[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 661-669. |
[56] | 陈郭平, 朱光有, 阮壮, 等. 准同生白云石化作用及其对储层的影响: 以塔里木盆地寒武系白云岩为例[J]. 天然气地球科学, 2023, 34(2): 285-295. |
[57] | 钱一雄, 陈强路, 陈跃, 等. 碳酸盐岩中缝洞方解石成岩环境的矿物地球化学判识: 以塔河油田的沙79井和沙85井为例[J]. 沉积学报, 2009, 27(6): 1027-1032. |
[58] | 万友利, 赵瞻, 胡志中, 等. 羌塘盆地中侏罗统布曲组白云岩有序度与晶胞参数的影响因素及地质意义[J]. 沉积与特提斯地质, 2021, 41(4): 512-523. |
[59] | BROWN G, BRINDLEY G W. X-ray diffraction procedures for clay mineral identification[M]//BRINDLEY G W. Crystal structures of clay minerals and their X-ray identification. Colchester and London: Mineralogical Society of Great Britain and Ireland, 2015: 305-360. |
[60] | 傅斌, 赵淼, 郝延明. X射线衍射测量2∶17型稀土-过渡族化合物晶胞参数和体积的计算程序[J]. 天津师范大学学报(自然科学版), 2006, 26(3): 60-63. |
[61] | 沈江远, 闫琢玉, 付和平, 等. 西永2井中新统铁白云岩空间变异特征及成因[J]. 海洋地质前沿, 2021, 37(6): 39-48. |
[62] | 黄思静. 碳酸盐岩实验室研究方法(一)[J]. 矿物岩石, 1990, 10(1): 114-117. |
[63] | 骆雯, 赵婉霞, 荣静, 等. 铈基催化剂的形貌和晶面效应在NH3-SCR脱硝反应中的研究进展[J]. 中国稀土学报, 2023, 41(4): 655-673. |
[64] | 陈丰, 李雄耀, 王世杰. 矿物晶体的缺陷[J]. 矿物岩石地球化学通报, 2012, 31(2): 160-164. |
[65] | 刘国彬. 晶体缺陷与气-液包裹体形成机理[J]. 科学通报, 1979, 24(3): 115-119. |
[66] | SORAI M. Effects of calcite dissolution-reprecipitation on caprock’s sealing performance under geological CO2 storage[C]// AGU Fall Meeting Abstracts, 2021: H15H-1131. |
[67] | PIMIENTA L, ESTEBAN L, SAROUT J, et al. Supercritical CO2 injection and residence time in fluid-saturated rocks: evidence for calcite dissolution and effects on rock integrity[J]. International Journal of Greenhouse Gas Control, 2017, 67: 31-48. |
[68] | SULPIS O, LIX C, MUCCI A, et al. Calcite dissolution kinetics at the interface between a calcite-rich simulated sediment and natural seawater[C]// AGU Fall Meeting Abstracts, 2016: EP53C-0997. |
[69] | LIU Y, XIAN C G, LI Z, et al. A new classification system of lithic-rich tight sandstone and its application to diagnosis high-quality reservoirs[J]. Advances in Geo-Energy Research, 2020, 4(3): 286-295. |
[70] | 佘敏, 朱吟, 沈安江, 等. 塔中北斜坡鹰山组碳酸盐岩溶蚀的模拟实验研究[J]. 中国岩溶, 2012, 31(3): 234-239. |
[71] | MURPHY A E, JAKUBEK R S, STEELE A, et al. Raman spectroscopy provides insight into carbonate rock fabric based on calcite and dolomite crystal orientation[J]. Journal of Raman Spectroscopy, 2021, 52(6): 1155-1166. |
[72] | YANG L L, ZHU G Y, LI X W, et al. Influence of crystal nucleus and lattice defects on dolomite growth: geological implications for carbonate reservoirs[J]. Chemical Geology, 2022, 587: 120631. |
[73] | 雷怀彦, 朱莲芳. 四川盆地震旦系白云岩成因研究[J]. 沉积学报, 1992, 10(2): 69-78. |
[74] | BAO Z D, JI H C, WANG Y, et al. The primary dolostone in the meso-Neoproterozoic: cases study on platforms in China[J]. Journal of Palaeogeography, 2022, 11(2): 151-172. |
[75] | MANCHE C J, KACZMAREK S E. A global study of dolomite stoichiometry and cation ordering through the Phanerozoic[J]. Journal of Sedimentary Research, 2021, 91(5): 520-546. |
[76] | 杨守业, 黄志诚, 陈智娜. 原生白云石与交代白云石晶体的微结构对比研究[J]. 岩石矿物学杂志, 1997, 16(4): 362-366, T001. |
[77] | REN M, JONES B. Ediacaran cap dolostones from South China: petrography, dolomite stoichiometry, and crystal architecture[J]. Sedimentary Geology, 2023, 446: 106345. |
[78] | MENG R R, HAN Z Z, GAO X, et al. Dissolved ammonia catalyzes proto-dolomite precipitation at Earth surface temperature[J]. Earth and Planetary Science Letters, 2024, 646: 119012. |
[79] | KOESHIDAYATULLAH A, CORLETT H, HOLLIS C. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record[J]. Earth-Science Reviews, 2021, 220: 103751. |
[80] | 张涛, 林娟华, 韩月卿, 等. 四川盆地东部中二叠统茅口组热液白云岩发育模式及对储层的改造[J]. 石油与天然气地质, 2020, 41(1): 132-143, 200. |
[81] | 冯明友, 尚俊鑫, 沈安江, 等. 幕式热液作用对川西南部中二叠统碳酸盐岩储集层复合改造效应及地质意义[J]. 石油勘探与开发, 2024, 51(1): 74-87. |
[82] | 李双建, 杨天博, 韩月卿, 等. 四川盆地中二叠统热液白云岩化作用及其储层改造意义[J]. 石油与天然气地质, 2021, 42(6): 1265-1280. |
[83] | ZHANG K, LIU H, YANG X, et al. Identification and plane distribution of thin reservoirs in the Middle Permian Qixia Formation in Shuangyushi, Northwest Sichuan[J]. Carbonates and Evaporites, 2023, 38(4): 67. |
[84] | MCCORMICK C A, CORLETT H, CLOG M, et al. Basin scale evolution of zebra textures in fault-controlled, hydrothermal dolomite bodies: insights from the Western Canadian Sedimentary Basin[J]. Basin Research, 2023, 35(5): 2010-2039. |
[85] | BANERJEE A. Estimation of dolomite formation:dolomite precipitation and dolomitization[J]. Journal of the Geological Society of India, 2016, 87(5): 561-572. |
[86] | 黄擎宇, 刘伟, 张艳秋, 等. 白云石化作用及白云岩储层研究进展[J]. 地球科学进展, 2015, 30(5): 539-551. |
[87] | KRAUSE S, LIEBETRAU V, GORB S, et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma[J]. Geology, 2012, 40(7): 587-590. |
[88] | DILORETO Z A, BONTOGNALI T R R, AL DISI Z A, et al. Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid sabkhas, Qatar[J]. Extremophiles, 2019, 23(2): 201-218. |
[89] | BONTOGNALI T R R, MCKENZIE J A, WARTHMANN R J, et al. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria[J]. Terra Nova, 2014, 26(1): 72-77. |
[90] | 赵东方, 谭秀成, 罗冰, 等. 微生物诱导白云石沉淀研究进展及面临的挑战[J]. 沉积学报, 2022, 40(2): 335-349. |
[91] | LIU D, CHEN T, DAI Z Y, et al. A non-classical crystallization mechanism of microbially-induced disordered dolomite[J]. Geochimica et Cosmochimica Acta, 2024, 381: 198-209. |
[92] | HIPS K, HAAS J, POROS Z, et al. Dolomitization of Triassic microbial mat deposits (Hungary): origin of microcrystalline dolomite[J]. Sedimentary Geology, 2015, 318: 113-129. |
[93] | BÉNÉZETH P, BERNINGER U N, BOVET N, et al. Experimental determination of the solubility product of dolomite at 50-253 ℃[J]. Geochimica et Cosmochimica Acta, 2018, 224: 262-275. |
[94] | HSU K J. Chapter 4 chemistry of dolomite formation[M]//CHILINGAR G V, BISSELL H J, FAIRBRIDGE R W. Carbonate rocks:physical and chemical aspects. Amsterdam: Elsevier, 1967: 169-191. |
[95] | SHERMAN L A, BARAK P. Solubility and dissolution kinetics of dolomite in Ca-Mg-HCO3/CO3 solutions at 25℃ and 0.1 MPa carbon dioxide[J]. Soil Science Society of America Journal, 2000, 64(6): 1959-1968. |
[96] | ROBERTSON H A, CORLETT H, HOLLIS C, et al. Solubility product constants for natural dolomite (0-200 ℃) through a groundwater-based approach using the USGS produced water database[J]. American Journal of Science, 2022, 322(4): 593-645. |
[97] | 陈永权, 周新源, 杨文静. 白云石形成过程中的热力学与动力学基础及白云岩形成环境划分[J]. 海相油气地质, 2009, 14(1): 21-25. |
[98] | LIPPMANN F. Crystal chemistry of sedimentary carbonate minerals[M]//LIPPMANN F. Sedimentary Carbonate Minerals. Berlin, Heidelberg: Springer Berlin Heidelberg, 1973: 5-96. |
[99] | MORROW D W, RICKETTS B D. Experimental investigation of sulfate inhibition of dolomite and its mineral analogues[M]//SHUKLA V. Sedimentology and Geochemistry of Dolostones. North Carolina: SEPM (Society for Sedimentary Geology), 1988: 25-38. |
[100] | WANG X Y. Equilibrium between dolomitization and dedolomitization of a global set of surface water samples: a new theoretical insight on the dolomite inorganic formation mechanism[J]. Marine Chemistry, 2021, 235: 104017. |
[101] | BERNINGER U N, JORDAN G, LINDNER M, et al. On the effect of aqueous Ca on magnesite growth: insight into trace element inhibition of carbonate mineral precipitation[J]. Geochimica et Cosmochimica Acta, 2016, 178: 195-209. |
[102] | 吴承炀, 波刘, 于家鑫, 等. 白云岩成因分析综述[J]. 地球科学前沿, 2023, 13(6): 673-680. |
[103] | LAND L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125. |
[104] | HUANG Y R, YAO Q Z, LI H, et al. Aerobically incubated bacterial biomass-promoted formation of disordered dolomite and implication for dolomite formation[J]. Chemical Geology, 2019, 523: 19-30. |
[105] | LIU D, XU Y Y, YU Q Q, et al. Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite: implications for sedimentary dolomite formation[J]. Journal of Asian Earth Sciences, 2020, 193: 104301. |
[106] | ALI AL DISI Z, ZOUARI N, DITTRICH M, et al. Characterization of the extracellular polymeric substances (EPS) of Virgibacillus strains capable of mediating the formation of high Mg-calcite and protodolomite[J]. Marine Chemistry, 2019, 216: 103693. |
[107] | QIU X, WANG H M, YAO Y C, et al. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52[J]. Earth and Planetary Science Letters, 2017, 472: 197-205. |
[108] | LIU D, YU N, PAPINEAU D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49. |
[109] | LIU D, XU Y Y, PAPINEAU D, et al. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals[J]. Geochimica et Cosmochimica Acta, 2019, 247: 83-95. |
[110] | SÁNCHEZ-ROMÁN M, MCKENZIE J A, DE LUCA REBELLO WAGENER A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139. |
[111] | MACHEL H G, MOUNTJOY E W. Chemistry and environments of dolomitization: a reappraisal[J]. Earth-Science Reviews, 1986, 23(3): 175-222. |
[112] | WRIGHT D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 1999, 126(1/2/3/4): 147-157. |
[113] | SLAUGHTER M, HILL R J. The influence of organic matter in organogenic dolomitization[J]. Journal of Sedimentary Research, 1991, 61(2): 296-303. |
[114] | XU J, YAN C, ZHANG F F, et al. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17750-17755. |
[115] | RICHENS D T. The Chemistry of aqua ions: synthesis, structure and reactivity: a tour through the periodic table of the elements[M]. Hoboken: John Wiley and Son Ltd, 1997. |
[116] | WANG Y F, XU H F. Prediction of trace metal partitioning between minerals and aqueous solutions: a linear free energy correlation approach[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1529-1543. |
[117] | RUDOLPH W W, IRMER G, HEFTER G T. Raman spectroscopic investigation of speciation in MgSO4(aq)[J]. Physical Chemistry Chemical Physics, 2003, 5(23): 5253. |
[118] | STEPHENSON A E, DEYOREO J J, WU L, et al. Peptides enhance magnesium signature in calcite: insights into origins of vital effects[J]. Science, 2008, 322(5902): 724-727. |
[119] | ASTILLEROS J M, FERNÁNDEZ-DÍAZ L, PUTNIS A. The role of magnesium in the growth of calcite:an AFM study[J]. Chemical Geology, 2010, 271(1/2): 52-58. |
[120] | 李波, 颜佳新, 刘喜停, 等. 白云岩有机成因模式: 机制、进展与意义[J]. 古地理学报, 2010, 12(6): 699-710. |
[121] | WANG X L, CHOU I M, HU W X, et al. Kinetic inhibition of dolomite precipitation: insights from Raman spectroscopy of Mg2+-$\mathrm{SO}_{4}^{2-}$ ion pairing in MgSO4/MgCl2/NaCl solutions at temperatures of 25 to 200℃[J]. Chemical Geology, 2016, 435: 10-21. |
[122] | VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al. Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50(2): 237-245. |
[123] | DENG S C, DONG H L, LV G, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278(3/4): 151-159. |
[124] | BONTOGNALI T R R, VASCONCELOS C, WARTHMANN R J, et al. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates)[J]. Sedimentology, 2010, 57(3): 824-844. |
[125] | WRIGHT D T, WACEY D. Sedimentary dolomite:a reality check[J]. Geological Society, London, Special Publications, 2004, 235(1): 65-74. |
[126] | GRÁNÁSY L, PUSZTAI T, TEGZE G, et al. Growth and form of spherulites[J]. Physical Review E, 2005, 72: 011605. |
[127] | MCKENZIE J A, VASCONCELOS C. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives[J]. Sedimentology, 2009, 56(1): 205-219. |
[128] | KACZMAREK S E, SIBLEY D F. A comparison of nanometer-scale growth and dissolution features on natural and synthetic dolomite crystals:implications for the origin of dolomite[J]. Journal of Sedimentary Research, 2007, 77(5): 424-432. |
[129] | LOWENSTAM H A. Minerals formed by organisms[J]. Science, 1981, 211(4487): 1126-1131. |
[130] | ZHANG F, XU H, KONISHI H, et al. Polysaccharide-catalyzed nucleation and growth of disordered dolomite:a potential precursor of sedimentary dolomite[J]. American Mineralogist, 2012, 97(4): 556-567. |
[131] | VASCONCELOS C, MCKENZIE J A, BERNASCONI S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222. |
[132] | SCHULTZE-LAM S, FORTIN D, DAVIS B S, et al. Mineralization of bacterial surfaces[J]. Chemical Geology, 1996, 132(1/2/3/4): 171-181. |
[133] | KACZMAREK S E, THORNTON B P. The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments[J]. Chemical Geology, 2017, 468: 32-41. |
[134] | FANG Y H, XU H F. Dissolved silica-catalyzed disordered dolomite precipitation[J]. American Mineralogist, 2022, 107(3): 443-452. |
[135] | PETERS S E, HUSSON J M, WILCOTS J. The rise and fall of stromatolites in shallow marine environments[J]. Geology, 2017, 45(6): 487-490. |
[136] | HU Q, NIELSEN M H, FREEMAN C L, et al. The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways[J]. Faraday Discussions, 2012, 159: 509-523. |
[137] | VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1): 71-79. |
[138] | 崔红艳. 基于成核动力学理论的EDTA对不同种类水垢形成的影响及机理研究[D]. 呼和浩特: 内蒙古大学, 2021. |
[139] | THANH N T K, MACLEAN N, MAHIDDINE S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-7630. |
[140] | GARCÍA-RUIZ J M, OTÁLORA F. Crystal growth in geology[M]//HURLE D T. Handbook of crystal growth. Amsterdam: Elsevier, 2015: 1-43. |
[141] | DE YOREO J J. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 57-93. |
[142] | GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chemical Society Reviews, 2014, 43(7): 2348-2371. |
[143] | 伍坤宇, 熊鹰, 谭秀成, 等. 储层孔隙系统“水—岩” 反应结晶动力学研究进展[J]. 沉积学报, 2022, 40(4): 996-1009. |
[144] | VOLMER M, WEBER A. Keimbildung in übersättigten gebilden[J]. Zeitschrift Für Physikalische Chemie, 1926, 119U(1): 277-301. |
[145] | DE YOREO J. More than one pathway[J]. Nature Materials, 2013, 12(4): 284-285. |
[146] | LEE J, YANG J, KWON S G, et al. Nonclassical nucleation and growth of inorganic nanoparticles[J]. Nature Reviews Materials, 2016, 1(8):16034. |
[147] | SIBLEY D F, DEDOES R E, BARTLETT T R. Kinetics of dolomitization[J]. Geology, 1987, 15(12): 1112. |
[148] | BAI G Y, GAO D, LIU Z, et al. Probing the critical nucleus size for ice formation with graphene oxide nanosheets[J]. Nature, 2019, 576(7787): 437-441. |
[149] | MELDRUM F C, SEAR R P. Now you see them[J]. Science, 2008, 322(5909): 1802-1803. |
[150] | DE YOREO J J, ZEPEDA-RUIZ L A, FRIDDLE R W, et al. Rethinking classical crystal growth models through molecular scale insights: consequences of kink-limited kinetics[J]. Crystal Growth and Design, 2009, 9(12): 5135-5144. |
[151] | RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite[J]. Nanoscale, 2011, 3(1): 265-271. |
[152] | RIEGER J, FRECHEN T, COX G, et al. Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes[J]. Faraday Discussions, 2007, 136: 265. |
[153] | CHUNG S Y, KIM Y M, KIM J G, et al. Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate[J]. Nature Physics, 2009, 5(1): 68-73. |
[154] | PURGSTALLER B, MAVROMATIS V, IMMENHAUSER A, et al. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite-In situ monitoring[J]. Geochimica et Cosmochimica Acta, 2016, 174: 180-195. |
[155] | DE YOREO J J, GILBERT P U P A, SOMMERDIJK N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760. |
[156] | JEHANNIN M, RAO A, CÖLFEN H. New horizons of nonclassical crystallization[J]. Journal of the American Chemical Society, 2019, 141(26): 10120-10136. |
[157] | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growthand Design, 2016, 16(11): 6663-6681. |
[158] | POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3Formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458. |
[159] | SEBASTIANI D F, WOLF S L P, BORN D B, et al. Water dynamics from THz spectroscopy reveal the locus of a liquid-liquid binodal limit in aqueous CaCO3 solutions[J]. Angewandte Chemie International Edition, 2017, 56(2): 490-495. |
[160] | JIA C Y, XIAO A N, ZHAO J, et al. A new perspective on crystal nucleation: a classical view on non-classical nucleation[J]. Crystal Growth and Design, 2024, 24(1): 601-612. |
[161] | WILLMANN R. Rediscovered:permotipula patricia, the oldest known fly[J]. Naturwissenschaften, 1989, 76(8): 375-377. |
[162] | KOSSEL W. Nachrichten der gesselschaft der wissenschaften göttingen,Mathema tisch-Physikalische Klasse[J]. Zur Theorie des kristallwachstums, 1927: 135-143. |
[163] | SETHMANN I, WANG J W, BECKER U, et al. Strain-induced segmentation of magnesian calcite thin films growing on a calcite substrate[J]. Crystal Growth and Design, 2010, 10(10): 4319-4326. |
[164] | BAUER E. Phänomenologische theorie der kristallabscheidung an oberflächen. II[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 110(1/2/3/4/5/6): 372-394. |
[165] | PINA C M, PUTNIS A, ASTILLEROS J M. The growth mechanisms of solid solutions crystallising from aqueous solutions[J]. Chemical Geology, 2004, 204(1/2): 145-161. |
[166] | ZHU G Y, WEI Z L, LI W Q, et al. Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: an implication to the stability of geologic carbon sequestration[J]. Journal of Colloid and Interface Science, 2023, 650: 1003-1012. |
[1] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
[2] | ZHU Ying, LI Yanzhang, LU Anhuai, DING Hongrui, LI Yan, WANG Changqiu. Middle and far infrared spectroscopic analysis of calcite, dolomite and magnesite [J]. Earth Science Frontiers, 2022, 29(1): 459-469. |
[3] | ZHANG Shengyu, ZHANG Menghuan, WANG Ligang, WAN Yuyu. Degradation of naphthalene by microorganisms in groundwater: Characteristics and kinetics [J]. Earth Science Frontiers, 2021, 28(5): 146-158. |
[4] | . Approaches and advancement of the study of metamorphic pTt paths. [J]. Earth Science Frontiers, 2011, 18(2): 1-16. |
[5] | TAN Dan-Jun MA Hong-Wen LI Ge LIU Gao JU Dan. Sintering reaction of pseudoleucite syenite: Thermodynamic analysis and process evaluation. [J]. Earth Science Frontiers, 2009, 16(4): 269-276. |
[6] | ZHANG Rong-Hua ZHANG Xue-Tong HU Shu-Min. Critical fluids and mineral(rock)interactions in extreme conditions of the Earth interior [J]. Earth Science Frontiers, 2009, 16(1): 53-67. |
[7] | SUN Qiang ZHENG Hai-Fei. A preliminary study of oil generation kinetics using diamond anvil cell technique [J]. Earth Science Frontiers, 2009, 16(1): 6-10. |
[8] | XI Hong-Bei YANG Qi CHANG Hai-Chao HAO Chun-Bo. Biodegradation characteristics and enzymatic reaction kinetics of phenanthrenedegrading bacteria. [J]. Earth Science Frontiers, 2008, 15(6): 169-176. |
[9] | JIA Fan LIU Yu-Long LIU Fei CHEN Hong-Han. Column experimental studies on effects of benzene, toluene on reductive dechlorination of PCE by granular iron. [J]. Earth Science Frontiers, 2008, 15(6): 142-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||