Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 459-469.DOI: 10.13745/j.esf.sf.2021.1.58
Previous Articles Next Articles
ZHU Ying(), LI Yanzhang, LU Anhuai*(
), DING Hongrui*(
), LI Yan, WANG Changqiu
Received:
2020-05-10
Revised:
2021-01-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
LU Anhuai,DING Hongrui
CLC Number:
ZHU Ying, LI Yanzhang, LU Anhuai, DING Hongrui, LI Yan, WANG Changqiu. Middle and far infrared spectroscopic analysis of calcite, dolomite and magnesite[J]. Earth Science Frontiers, 2022, 29(1): 459-469.
Fig.1 (a) X-ray diffraction, (b) Raman, (c) mid-IR and (d) far-IR spectra of calcite (top trace), dolomite (middle trace) and magnesite (bottom trace) samples
样品名称 | 发射率 |
---|---|
方解石 | 0.951 |
白云石 | 0.938 |
菱镁矿 | 0.895 |
Table 1 Emissivities of carbonate minerals
样品名称 | 发射率 |
---|---|
方解石 | 0.951 |
白云石 | 0.938 |
菱镁矿 | 0.895 |
Fig.3 Relationship between the relative atomic mass of cations and Roman (a), mid-IR (b), far-IR (c) or mid-IR emission (d) frequencies for different vibrational modes. Square—calcite, triangle—dolomite, circle—magnetite.
Fig.4 Plots of (a) emissivity vs. CO 3 2 -asymmetric vibrational band range and (b) emissivity or lowest emissivity (red) vs. CO 3 2 - asymmetric stretching frequency
Fig.5 Plot of emissivity vs. cation radius (a, modified after [48]), (Ca/Mg)—O bond length (b, modified after [49-50]), C—O bond length (c, modified after [51]) and unit cell volume (d, modified after [52])
[1] | ARGAST S, DONNELLY T W. The chemical discrimination of clastic sedimentary components[J]. Journal of Sedimentary Research, 1987, 57(5):813-823. |
[2] | DICKINSON W R, SUCZEK C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12):2164-2182. |
[3] |
FRALICK P W, KRONBERG B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1):111-124.
DOI URL |
[4] | CHATZITHEODORIDIS E, TURNER G. Secondary minerals in the Nakhla Meteorite[J]. Meteoritics & Planetary Science, 1990, 25(4):354. |
[5] |
CLAYTON R N, MAYEDA T K. Isotopic composition of carbonate in EETA 79001 and its relation to parent body volatiles[J]. Geochimica et Cosmochimica Acta, 1988, 52(4):925-927.
DOI URL |
[6] |
GOODING J L, WENTWORTH S J, ZOLENSKY M E. Aqueous alteration of the Nakhla meteorite[J]. Meteoritics, 1991, 26(2):135-143.
DOI URL |
[7] |
MCKAY D S, GIBSON E K, THOMAS-KEPRTA K L, et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001[J]. Science, 1996, 273(5277):924-930.
DOI URL |
[8] |
TREIMAN A H, BARRETT R A, GOODING J L. Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite[J]. Meteoritics, 1993, 28(1):86-97.
DOI URL |
[9] |
EDWARDS H G M, VILLAR S E J, JEHLICKA J, et al. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10):2273-2280.
DOI URL |
[10] |
CHESTER R, ELDERFIELD H. The application of infra-red absorption spectroscopy to carbonate mineralogy[J]. Sedimentology, 1967, 9(1):5-21.
DOI URL |
[11] | ANGINO E E. Far infrared (500-30 cm-1) spectra of some carbonate minerals[J]. American Mineralogist, 1967, 52(1/2):137-148. |
[12] |
MORANDAT J, LORENZELLI V, LECOMTE J I. Détermination expérimentale et essai d’attribution des vibrations externes actives en infrarouge dans quelques carbonates métalliques a l’état cristallin[J]. Journal de Physique, 1967, 28(2):152-156.
DOI URL |
[13] |
BRUSENTSOVA T N, PEALE R E, MAUKONEN D, et al. Far infrared spectroscopy of carbonate minerals[J]. American Mineralogist, 2010, 95(10):1515-1522.
DOI URL |
[14] | LANE M D. Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite[J]. Journal of Geophysical Research: Planets, 1999, 104(E6):14099-14108. |
[15] |
FROST R L, KLOPROGGE J T. Infrared emission spectroscopic study of brucite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55(11):2195-2205.
DOI URL |
[16] |
FROST R L, BAHFENNE S, GRAHAM J. Infrared and infrared emission spectroscopic study of selected magnesium carbonate minerals containing ferric iron-implications for the geosequestration of greenhouse gases[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(4):1610-1616.
DOI URL |
[17] | LANE M D. Thermal emission spectroscopy of carbonates and evaporites: experimental, theoretical, and field studies[M]. Phoenix: Arizona State University, 1997. |
[18] |
EFFENBERGER H, MEREITER Κ, ZEMANN J. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1981, 156(1/2/3/4):233-244.
DOI URL |
[19] |
FROST R L, MARTENS W N, WAIN D L, et al. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 70(5):1120-1126.
DOI URL |
[20] |
GUNASEKARAN S, ANBALAGAN G, PANDI S. Raman and infrared spectra of carbonates of calcite structure[J]. Journal of Raman Spectroscopy, 2006, 37(9):892-899.
DOI URL |
[21] |
HERMAN R G, BOGDAN C E, SOMMER A J, et al. Discrimination among carbonate minerals by Raman spectroscopy using the laser microprobe[J]. Applied Spectroscopy, 1987, 41(3):437-440.
DOI URL |
[22] |
NICOLA J H, SCOTT J F, COUTO R M, et al. Raman spectra of dolomite [CaMg(CO3)2][J]. Physical Review B, 1976, 14(10):4676-4678.
DOI URL |
[23] |
RUTT H, NICOLA J. Raman spectra of carbonates of calcite structure[J]. Journal of Physics C: Solid State Physics, 1974, 7(24):4522.
DOI URL |
[24] | DUBRAWSKI J, CHANNON A, WARNE S S J. Examination of the siderite-magnesite mineral series by Fourier transform infrared spectroscopy[J]. American Mineralogist, 1989, 74(1/2):187-190. |
[25] | FARMER V C, FAKMEK V C. Mineralogical society monograph 4: the infrared spectra of minerals[R]. London: The Mineralogical Society of Great Britain and Ireland, 1974. |
[26] |
FROST R L, PALMER S J. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O: implications for the formula of nesquehonite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 78(4):1255-1260.
DOI URL |
[27] | JONES G C, JACKSON B. The spectra[M]// Infrared transmission spectra of carbonate minerals. Dordrecht: Springer Netherlands, 1993. |
[28] |
LEGODI M A, DE WAAL D, POTGIETER J H. Quantitative determination of CaCO3 in cement blends by FT-IR[J]. Applied Spectroscopy, 2001, 55(3):361-365.
DOI URL |
[29] |
WEIR C E, LIPPINCOTT E R. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1961, 65A(3):173-183.
DOI URL |
[30] | ADLER H H, KERR P F. Infrared spectra, symmentry and structure relations of some carbonate minerals[J]. American Mineralogist, 1963, 48(7/8):839-853. |
[31] | ELDERFIELD H, CHESTER R. The Effect of periodicity on the infrared absorption frequency v4 of anhydrous normal carbonate minerals[J]. American Mineralogist, 1971, 56(9/10):1600-1606. |
[32] | NYQUIST R A, KAGEL R O. Infrared spectra of inorganic compounds (3 800-45 cm-1) [M]. New York and London: Academic Press, 1971. |
[33] | WHITE W B. Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals[J]. American Mineralogist, 1971, 56(1/2):46-53. |
[34] | SCHEETZ B, WHITE W B. Vibrational spectra of the alkaline earth double carbonates[J]. American Mineralogist, 1977, 62(1/2):36-50. |
[35] |
YAMAMOTO A, UTIDA T, MURATA H, et al. Optically-active vibrations and effective charges of dolomite[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1975, 31(9/10):1265-1270.
DOI URL |
[36] | YOO B H, PARK C M, OH T J, et al. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin[J]. Journal of Cosmetic Science, 2002, 53(3):175-184. |
[37] | MOENKE H H W. Mineralspektrum II[M]. Berlin: Akademie Verlag, 1966. |
[38] | KING P L, RAMSEY M S, MCMILLAN P E, et al. Laboratory Fourier transform infrared spectroscopy methods for geologic samples[J]. Infrared Spectroscopy in Geochemistry, Exploration, and Remote Sensing, 2004, 33:57-91. |
[39] | CHRISTENSEN P R, BANDFIELD J L, HAMILTON V E, et al. A thermal emission spectral library of rock-forming minerals[J]. Journal of Geophysical Research: Planets, 2000, 105(E4):9735-9739. |
[40] |
HARDGROVE C J, ROGERS A D, GLOTCH T D, et al. Thermal emission spectroscopy of microcrystalline sedimentary phases: effects of natural surface roughness on spectral feature shape[J]. Journal of Geophysical Research: Planets, 2016, 121(3):542-555.
DOI URL |
[41] | MICHALSKI J R, KRAFT M D, SHARP T G, et al. Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from thermal emission spectrometer data[J]. Journal of Geophysical Research, 2006, 111(E3):E03004. |
[42] |
MICHALSKI J R, KRAFT M D, SHARP T G, et al. Mineralogical constraints on the high-silica Martian surface component observed by TES[J]. Icarus, 2005, 174(1):161-177.
DOI URL |
[43] | WENRICH M L, CHRISTENSEN P R. Optical constants of minerals derived from emission spectroscopy: application to quartz[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B7):15921-15931. |
[44] | SALISBURY J W, WALTER L S, VERGO N. Mid-infrared (2.1-25 μm) spectra of minerals[R]. Reston: US Geological Survey, 1987. |
[45] | 王宝明, 苏大昭, 张光寅. 红外高辐射材料的辐射特性及辐射机制[J]. 红外研究, 1983, 2(1):55-62. |
[46] | HAMILTON V E. Thermal infrared emission spectroscopy of the pyroxene mineral series[J]. Journal of Geophysical Research: Planets, 2000, 105(E4):9701-9716. |
[47] | WILSON E B, DECIUS J C, CROSS P C. Molecular vibrations: the theory of infrared and Raman vibrational spectra[J]. Journal of the Electrochemical Society, 1980, 102(9):235C. |
[48] | LIDE D R. CRC handbook of chemistry physics[M]. Boston: CRC, 1990. |
[49] |
JOVANOVSKI G, STEFOV V, ŠOPTRAJANOV B, et al. Minerals from Macedonia. IV. Discrimination between some carbonate minerals by FTIR spectroscopy[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2002, 177(3):241-253.
DOI URL |
[50] | REEDER R J. Crystal chemistry of the rhombohedral carbonates[J]. Reviews in Mineralogy, 1983 11(1):1-47. |
[51] |
BUSING W R, LEVY H A. The effect of thermal motion on the estimation of bond lengths from diffraction measurements[J]. Acta Crystallographica, 1964, 17(2):142-146.
DOI URL |
[52] |
VALENZANO L, NOËL Y, ORLANDO R, et al. Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite[J]. Theoretical Chemistry Accounts, 2007, 117(5/6):991-1000.
DOI URL |
[53] |
GAFFEY S J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 μm): anhydrous carbonate minerals[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(B2):1429.
DOI URL |
[54] |
KELLER W D, SPOTTS J H, BIGGS D L. Infrared spectra of some rock forming minerals[J]. American Journal of Science, 1952, 250(6):453-471.
DOI URL |
[1] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||