

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 222-235.DOI: 10.13745/j.esf.sf.2025.10.9
Previous Articles Next Articles
LIU Qiming1,2(
), YANG Zhibing1,2,*(
), WU Ting1,2
Received:2025-07-11
Revised:2025-08-23
Online:2026-01-25
Published:2025-11-10
CLC Number:
LIU Qiming, YANG Zhibing, WU Ting. Transport and retention mechanisms of micro/nano plastics during two-phase flow[J]. Earth Science Frontiers, 2026, 33(1): 222-235.
Fig.2 DLVO interaction energy between M/NPs, between M/NPs and the two-phase interface, and between M/NPs and the solid surface for M/NPs (a)—d=0.5 μm;(b)—d=1 μm;(c)—d=5 μm。
Fig.3 Distribution of the nonwetting liquid and M/NPs of different diameters (d) in porous media and displacement flow rates (Q) (a)-(c)—d=0.5 μm,Q=1、50和500 μL/min;(d)-(f)—d=1 μm,Q=1、50和500 μL/min;(g)-(i)—d=5 μm,Q=1、50和500 μL/min。比例尺代表100 μm。
Fig.6 Schematic diagram and microscopy image showing M/NPs clusters accumulation at: (1) grain-grain contact area, (2) solid surfaces, and (3) fluid-fluid interfaces
| [1] |
ROCHMAN C M, BROOKSON C, BIKKER J, et al. Rethinking microplastics as a diverse contaminant suite[J]. Environmental Toxicology and Chemistry, 2019, 38(4): 703-711.
DOI PMID |
| [2] |
O’CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534.
DOI PMID |
| [3] |
丁佳妍, 刘翔宇, 陈旭文, 等. 环境中微塑料的微生物降解机制与生物强化[J]. 地学前缘, 2025, 32(3): 248-262.
DOI |
| [4] |
VETHAAK A D, LEGLER J. Microplastics and human health[J]. Science, 2021, 371(6530): 672-674.
DOI PMID |
| [5] |
KOELMANS A A, MOHAMED NOR N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality[J]. Water Research, 2019, 155: 410-422.
DOI PMID |
| [6] |
刘贺, 宋树贤, 孙梅, 等. 土壤和植物中微塑料研究现状分析及检测方法研究进展[J]. 地学前缘, 2024, 31(2): 183-195.
DOI |
| [7] |
BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media[J]. Environmental Science & Technology, 2003, 37(10): 2242-2250.
DOI URL |
| [8] |
CAI L, HU L L, SHI H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197: 142-151.
DOI PMID |
| [9] | 谭博, 刘曙光, 代朝猛, 等. 滨海地下水交互带中的胶体运移行为研究综述[J]. 水科学进展, 2017, 28(5): 788-800. |
| [10] |
冶雪艳, 李铮, 罗冉, 等. 地下水人工补给过程中流速对多孔介质胶体堵塞的影响机理[J]. 化工学报, 2021, 72(11): 5520-5532.
DOI |
| [11] |
宋欢, 罗锡明, 张莉, 等. 微塑料对水中甲基橙的吸附特征分析[J]. 地学前缘, 2019, 26(6): 19-27.
DOI |
| [12] |
HE H Y, XIONG X F, WU T, et al. Pore-scale study of particle transport and clogging mechanisms in a porous micromodel[J]. Separation and Purification Technology, 2025, 362: 131929.
DOI URL |
| [13] |
TONG M P, HE L, RONG H F, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169: 115284.
DOI URL |
| [14] | 陈晓彤, 郭照立. 基于Boltzmann方程的多孔介质中胶体输运模型[J]. 物理学报, 2025, 74(12): 191-203. |
| [15] | 袁瑞强, 郭威, 王鹏, 等. 多孔介质表面化学异质性对胶体运移的影响[J]. 环境科学学报, 2017, 37(9): 3498-3504. |
| [16] | 刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317. |
| [17] |
WU T, YANG Z B, HU R, et al. Film entrainment and microplastic particles retention during gas invasion in suspension-filled microchannels[J]. Water Research, 2021, 194: 116919.
DOI URL |
| [18] |
DANI A, YEGANEH M, MALDARELLI C. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface[J]. Journal of Colloid and Interface Science, 2022, 628: 931-945.
DOI PMID |
| [19] | 吴婷, 杨志兵, 胡冉, 等. 细颗粒运移与孔隙堵塞对两相渗流特性的影响[J]. 岩土力学, 2025, 46(6): 1755-1764, 1776. |
| [20] | WU T, YANG Z B, LEHOUX A, et al. Liquid fragmentation induced by particle aggregation during two-phase flow in 3D porous media[J]. Geophysical Research Letters, 2025, 52(3): e2024GL113063. |
| [21] |
WAN J M, WILSON J L. Colloid transport in unsaturated porous media[J]. Water Resources Research, 1994, 30(4): 857-864.
DOI URL |
| [22] |
ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
DOI URL |
| [23] | 袁瑞强, 郭威, 王鹏, 等. 高pH环境对胶体在饱和多孔介质中迁移的影响[J]. 中国环境科学, 2017, 37(9): 3392-3398. |
| [24] | 殷宪强, 孙慧敏, 易磊, 等. 孔隙水流速对胶体在饱和多孔介质中运移的影响[J]. 水土保持学报, 2010, 24(5): 101-104. |
| [25] |
HE H Y, WU T, CHEN Y F, et al. A pore-scale investigation of microplastics migration and deposition during unsaturated flow in porous media[J]. Science of the Total Environment, 2023, 858: 159934.
DOI URL |
| [26] | OCHIAI N, KRAFT E L, SELKER J S. Methods for colloid transport visualization in pore networks[J]. Water Resources Research, 2006, 42(12): 2006WR004961. |
| [27] | 袁瑞强, 张文新, 王仕琴. 饱和多孔介质中水流停滞对胶体吸附与解吸的影响[J]. 环境科学研究, 2020, 33(2): 431-437. |
| [28] |
XIONG X F, YANG Z B, HU R, et al. Predicting colloid transport and deposition in an array of collectors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659: 130762.
DOI URL |
| [29] |
WU T, YANG Z B, HU R, et al. Three-dimensional visualization reveals pore-scale mechanisms of colloid transport and retention in two-phase flow[J]. Environmental Science & Technology, 2023, 57(5): 1997-2005.
DOI URL |
| [30] |
ZEVI Y, GAO B, ZHANG W, et al. Colloid retention at the meniscus-wall contact line in an open microchannel[J]. Water Research, 2012, 46(2): 295-306.
DOI PMID |
| [31] | 李东奇, 杨志兵, 张乐, 等. 空气-悬浮液驱替条件下颗粒边壁滞留研究[J]. 力学学报, 2023, 55(11): 2531-2538. |
| [32] |
WU T, CHEN Y R, YANG Z B. 3D pore-scale characterization of colloid aggregation and retention by confocal microscopy: Effects of fluid structure and ionic strength[J]. Science of the Total Environment, 2024, 917: 170349.
DOI URL |
| [33] |
YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: a review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780: 146546.
DOI URL |
| [34] |
TORKZABAN S, BRADFORD S A, VAN GENUCHTEN M T, et al. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining[J]. Journal of Contaminant Hydrology, 2008, 96(1/2/3/4): 113-127.
DOI URL |
| [35] |
FLURY M, ARAMRAK S. Role of air-water interfaces in colloid transport in porous media: a review[J]. Water Resources Research, 2017, 53(7): 5247-5275.
DOI URL |
| [36] |
MOLNAR I L, JOHNSON W P, GERHARD J I, et al. Predicting colloid transport through saturated porous media: a critical review: predicting colloid transport through saturated porous media[J]. Water Resources Research, 2015, 51(9): 6804-6845.
DOI URL |
| [37] |
MA H L, HRADISKY M, JOHNSON W P. Extending applicability of correlation equations to predict colloidal retention in porous media at low fluid velocity[J]. Environmental Science & Technology, 2013, 47(5): 2272-2278.
DOI URL |
| [38] | 张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016, 27(4): 629-638. |
| [39] | 叶芯瑶, 吴鸣, 胡晓农, 等. 纳米塑料颗粒在饱和多孔介质中的迁移规律[J]. 地质科技通报, 2022, 41(4): 225-233. |
| [40] |
RIJNAARTS H H M, NORDE W, LYKLEMA J, et al. DLVO and steric contributions to bacterial deposition in media of different ionic strengths[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/2/3/4): 179-195.
DOI URL |
| [41] | AUSET M, KELLER A A. Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels[J]. Water Resources Research, 2006, 42(12): 2005WR004639. |
| [42] |
BRADFORD S A, TORKZABAN S. Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models[J]. Vadose Zone Journal, 2008, 7(2): 667-681.
DOI URL |
| [43] | 蒋思晨, 白冰. 悬浮颗粒形状对其在多孔介质中迁移和沉积特性的影响[J]. 岩土力学, 2018, 39(6): 2043-2051. |
| [44] |
ZHANG W, MORALES V L, CAKMAK M E, et al. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration[J]. Environmental Science & Technology, 2010, 44(13): 4965-4972.
DOI URL |
| [45] |
PETOSA A R, JAISI D P, QUEVEDO I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions[J]. Environmental Science & Technology, 2010, 44(17): 6532-6549.
DOI URL |
| [46] | BIZMARK N, SCHNEIDER J, PRIESTLEY R D, et al. Multiscale dynamics of colloidal deposition and erosion in porous media[J]. Science Advances, 2020, 6(46): eabc2530. |
| [47] | BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Significance of straining in colloid deposition: evidence and implications[J]. Water Resources Research, 2006, 42(12): 2005WR004791. |
| [48] | JOHNSON W P, TONG M P, LI X Q. On colloid retention in saturated porous media in the presence of energy barriers: the failure of α, and opportunities to predict η[J]. Water Resources Research, 2007, 43(12): 2006WR005770. |
| [49] |
RYAN J N, ELIMELECH M. Colloid mobilization and transport in groundwater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107: 1-56.
DOI URL |
| [50] |
JOHNSON W P, LI X Q, ASSEMI S. Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition[J]. Advances in Water Resources, 2007, 30(6/7): 1432-1454.
DOI URL |
| [51] |
TORKZABAN S, BRADFORD S A, WALKER S L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media[J]. Langmuir, 2007, 23(19): 9652-9660.
PMID |
| [52] | 代朝猛, 周辉, 刘曙光, 等. 地下水多孔介质中胶体与污染物协同运移规律研究进展[J]. 水资源与水工程学报, 2017, 28(5): 15-23. |
| [53] |
LI X Q, SCHEIBE T D, JOHNSON W P. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon[J]. Environmental Science & Technology, 2004, 38(21): 5616-5625.
DOI URL |
| [54] |
SASIDHARAN S, TORKZABAN S, BRADFORD S A, et al. Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 169-179.
DOI URL |
| [1] | YANG Huaju, LI Canfeng, YANG Kehao, ZHANG Xilu, WANG Chuanyu, WANG Xingrong, HE Xu, PENG Xuefeng, ZHANG Liankai. Biomass and distribution characteristics of dominant shrubs under varying degrees of rocky desertification in the karst region of southern Yunnan [J]. Earth Science Frontiers, 2024, 31(5): 440-448. |
| [2] | JIANG Xingchao, XU Jing, LI Ruyi, JIA Yifan, YANG Pan, LUO Jie. Soil chromium in Shantou City, Guangdong Province: Spatial distribution characteristics, source apportionment and influencing factors [J]. Earth Science Frontiers, 2023, 30(2): 514-525. |
| [3] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
| [4] | SONG Yingxin, LI Shengrong, SHEN Junfeng, ZHANG Long, LI Wentao, ZENG Yongjie. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(2): 305-319. |
| [5] | YIN Zhiqiang, WEI Gang, QIN Xiaoguang, LI Wenjuan, ZHAO Wuji. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 46-57. |
| [6] | WU Chu,WU Xiong,ZHANG Yanshuai,DONG Yanyan,ZHU Pengcheng. Distribution characteristics and genesis of highfluoride groundwater in the Niuxin Mountain, Qinhuangdao. [J]. Earth Science Frontiers, 2018, 25(4): 307-315. |
| [7] | MAO Re-Yu, GUO Hua-Meng-*, GU Yong-Feng, JIANG Yu-Xiao, CAO Yong-Sheng, DIAO Wei-Guang, WANG Zhen. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin,Inner Mongolia. [J]. Earth Science Frontiers, 2016, 23(2): 260-268. |
| [8] | ZHANG Guo-Hua, ZHANG Jian-Pei. A discussion on the tectonic inversion and its genetic mechanism in the East China Sea Shelf Basin [J]. Earth Science Frontiers, 2015, 22(1): 260-270. |
| [9] | . A preliminary study of the focal mechanism of the deepfocus earthquakes in Northeast China. [J]. Earth Science Frontiers, 2012, 19(5): 300-311. |
| [10] | XIANG Fang SONG Jian-Chun LUO Lai TIAN Xin. Distribution characteristics and climate significance of continental special deposits in the Early Cretaceous. [J]. Earth Science Frontiers, 2009, 16(5): 48-. |
| [11] | LIU Chen CHEN Jia-Wei YANG Zhong-Fang. Geochemical characteristics of DDT and HCH in agricultural soil in the suburb of Beijing. [J]. Earth Science Frontiers, 2008, 15(5): 82-89. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||