Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 159-166.DOI: 10.13745/j.esf.sf.2021.2.16
Previous Articles Next Articles
LIU Zhitong1(), ZHOU Ni2, QIAO Wenjing3, YE Shujun1,*(
)
Received:
2020-04-20
Revised:
2021-09-15
Online:
2021-09-25
Published:
2021-10-29
Contact:
YE Shujun
CLC Number:
LIU Zhitong, ZHOU Ni, QIAO Wenjing, YE Shujun. Effects of o-nitro-p-methylphenol and o-amino-p-methylphenol on the anaerobic biodegradation of 1,2,4-TCB[J]. Earth Science Frontiers, 2021, 28(5): 159-166.
化学名称 | 分子式 | 化学结构式 | 分子量 | 外观 | 化学性质 |
---|---|---|---|---|---|
邻氨基对 甲基苯酚 | C7H9NO | | 123.15 | 白色结晶粉末,遇空气易氧化变色 | 有刺激性。易溶于氯仿、乙醚、乙醇等有机溶剂。最大溶解度9 983 mg·L-1 (25 ℃) |
邻硝基对 甲基苯酚 | C7H6NO3 | | 152.13 | 黄色结晶块状或浅棕色油状液体 | 有强烈的刺激性气味。易溶于乙醇、乙醚、氯仿等有机溶剂。微溶于水,最大溶解度695 mg·L-1 (25 ℃) |
Table 1 Chemical properties of o-amino-p-methylphenol and o-nitro-p-methylphenol
化学名称 | 分子式 | 化学结构式 | 分子量 | 外观 | 化学性质 |
---|---|---|---|---|---|
邻氨基对 甲基苯酚 | C7H9NO | | 123.15 | 白色结晶粉末,遇空气易氧化变色 | 有刺激性。易溶于氯仿、乙醚、乙醇等有机溶剂。最大溶解度9 983 mg·L-1 (25 ℃) |
邻硝基对 甲基苯酚 | C7H6NO3 | | 152.13 | 黄色结晶块状或浅棕色油状液体 | 有强烈的刺激性气味。易溶于乙醇、乙醚、氯仿等有机溶剂。微溶于水,最大溶解度695 mg·L-1 (25 ℃) |
实验组 | 实验瓶编号 | 水土混合液用量/mL | 地下水用量/mL | 电子供体 | 电子受体 |
---|---|---|---|---|---|
对照组 | TCB1 TCB2 TCB3 | 10 | 150 | 无 | 1,2,4-TCB |
TCB+ 邻氨基对甲基苯酚组 | A1 A2 A3 | 10 | 150 | 无 | 1,2,4-TCB+ 邻氨基对甲基苯酚 |
TCB+ 邻硝基对甲基苯酚组 | N1 N2 N3 | 10 | 150 | 无 | 1,2,4-TCB+ 邻硝基对甲基苯酚 |
Table 2 Experimental design for microbial degradation
实验组 | 实验瓶编号 | 水土混合液用量/mL | 地下水用量/mL | 电子供体 | 电子受体 |
---|---|---|---|---|---|
对照组 | TCB1 TCB2 TCB3 | 10 | 150 | 无 | 1,2,4-TCB |
TCB+ 邻氨基对甲基苯酚组 | A1 A2 A3 | 10 | 150 | 无 | 1,2,4-TCB+ 邻氨基对甲基苯酚 |
TCB+ 邻硝基对甲基苯酚组 | N1 N2 N3 | 10 | 150 | 无 | 1,2,4-TCB+ 邻硝基对甲基苯酚 |
实验组 | 实验瓶编号 | 产物 | 44 d后TCB去除率/% | 76 d后TCB去除率/% |
---|---|---|---|---|
TCB | TCB2 | 1,2-DCB; 1,3-DCB; 1,4-DCB; MCB | 93.93 | 96.53 |
TCB3 | 1,2-DCB; 1,3-DCB; 1,4-DCB; MCB | 94.26 | 97.51 | |
TCB+ 邻硝基对甲基苯酚 | N1 | 1,4-DCB; MCB | 0 | 93.81 |
N2 | 1,4-DCB; MCB | 0 | 96.44 | |
N3 | 1,4-DCB; MCB | 0 | 97.20 | |
TCB+ 邻氨基对甲基苯酚 | A2 | 1,4-DCB; MCB | 93.38 | 96.24 |
A3 | 1,4-DCB; MCB | 95.63 | 97.45 |
Table 3 List of 1,2,4-TCB degradation products and removal rates for different experimental groups
实验组 | 实验瓶编号 | 产物 | 44 d后TCB去除率/% | 76 d后TCB去除率/% |
---|---|---|---|---|
TCB | TCB2 | 1,2-DCB; 1,3-DCB; 1,4-DCB; MCB | 93.93 | 96.53 |
TCB3 | 1,2-DCB; 1,3-DCB; 1,4-DCB; MCB | 94.26 | 97.51 | |
TCB+ 邻硝基对甲基苯酚 | N1 | 1,4-DCB; MCB | 0 | 93.81 |
N2 | 1,4-DCB; MCB | 0 | 96.44 | |
N3 | 1,4-DCB; MCB | 0 | 97.20 | |
TCB+ 邻氨基对甲基苯酚 | A2 | 1,4-DCB; MCB | 93.38 | 96.24 |
A3 | 1,4-DCB; MCB | 95.63 | 97.45 |
1,2,4-TCB脱氯速率/(μmol·L-1·d-1) | ||||||||
---|---|---|---|---|---|---|---|---|
条件 | 样本 | 第1周 | 第2周 | 第3周 | 第4周 | 第5周 | 第6周 | |
TCB | TCB2 | 0.40 | 1.06 | 11.03 | 3.11 | 1.24 | 0.06 | |
TCB3 | 0.60 | 0.81 | 2.82 | 14.16 | 0.05 | |||
TCB+ | A2 | 1.65 | 10.30 | 0.92 | 0.53 | 0.16 | ||
邻氨基对甲基苯酚 | A3 | 5.00 | 8.33 | 0.97 | 0.53 | 0.22 | ||
1,2,4-TCB脱氯速率/(μmol·L-1·d-1) | ||||||||
条件 | 样本 | 第6周 | 第7周 | 第8周 | 第9周 | 第10周 | 第11周 | |
TCB+ | N1 | 0.25 | 1.36 | 9.90 | 4.95 | 0.11 | 0.06 | |
邻硝基对甲基苯酚 | N2 | 0.75 | 7.12 | 7.95 | 0.42 | 0.11 | 0.06 |
Table 4 List of TCB dechlorination rates for different experimental groups
1,2,4-TCB脱氯速率/(μmol·L-1·d-1) | ||||||||
---|---|---|---|---|---|---|---|---|
条件 | 样本 | 第1周 | 第2周 | 第3周 | 第4周 | 第5周 | 第6周 | |
TCB | TCB2 | 0.40 | 1.06 | 11.03 | 3.11 | 1.24 | 0.06 | |
TCB3 | 0.60 | 0.81 | 2.82 | 14.16 | 0.05 | |||
TCB+ | A2 | 1.65 | 10.30 | 0.92 | 0.53 | 0.16 | ||
邻氨基对甲基苯酚 | A3 | 5.00 | 8.33 | 0.97 | 0.53 | 0.22 | ||
1,2,4-TCB脱氯速率/(μmol·L-1·d-1) | ||||||||
条件 | 样本 | 第6周 | 第7周 | 第8周 | 第9周 | 第10周 | 第11周 | |
TCB+ | N1 | 0.25 | 1.36 | 9.90 | 4.95 | 0.11 | 0.06 | |
邻硝基对甲基苯酚 | N2 | 0.75 | 7.12 | 7.95 | 0.42 | 0.11 | 0.06 |
[1] |
RAPP P. Multiphasic kinetics of transformation of 1, 2, 4-trichlorobenzene at nano- and micromolar concentrations by Burkholderia sp. strain PS14[J]. Applied and Environmental Microbiology, 2001, 67(8):3496-3500.
DOI URL |
[2] | 宋洋, 王芳, 蒋新. 微生物降解1, 2, 4-三氯苯研究进展[J]. 土壤, 2011, 43(3):343-349. |
[3] |
ZOLEZZI M, CATTANEO C, TARAZONA J V. Probabilistic ecological risk assessment of 1, 2, 4-trichlorobenzene at a former industrial contaminated site[J]. Environmental Science & Technology, 2005, 39(9):2920-2926.
DOI URL |
[4] |
FREITAG D, BALLHORN L, GEYER H, et al. Environmental hazard profile of organic chemicals: an experimental method for the assessment of the behaviour of organic chemicals in the ecosphere by means of simple laboratory tests with 14C labelled chemicals[J]. Chemosphere, 1985, 14(10):1589-1616.
DOI URL |
[5] | 甘平, 樊耀波, 王敏健. 氯苯类化合物的生物降解[J]. 环境科学, 2001, 22(3):93-96. |
[6] |
QIAO W J, LUO F, LOMHEIM L, et al. Natural attenuation and anaerobic benzene detoxification processes at a chlorobenzene-contaminated industrial site inferred from field investigations and microcosm studies[J]. Environmental Science & Technology, 2018, 52(1):22-31.
DOI URL |
[7] | 周妮, 乔文静, 叶淑君. 1, 2, 4-三氯苯厌氧还原脱氯过程及荧光增白剂PF对脱氯过程影响研究[J]. 环境科学学报, 2018, 38(10):3954-3963. |
[8] |
ADRIAN L, GÖRISCH H. Microbial transformation of chlorinated benzenes under anaerobic conditions[J]. Research in Microbiology, 2002, 153(3):131-137.
DOI URL |
[9] |
HOLLIGER C, WOHLFARTH G, DIEKERT G. Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiology Reviews, 1998, 22(5):383-398.
DOI URL |
[10] | 瞿福平, 张晓健, 吕昕, 等. 氯代芳香化合物的生物降解性研究进展[J]. 环境科学, 1997, 18(2):74-78. |
[11] | 曹利锋. 基于筛板塔式生物膜反应器强化污染物生物降解[D]. 上海: 上海师范大学, 2019. |
[12] | 滕少香, 盛国平, 刘贤伟, 等. 芳香族硝基化合物的微生物降解[J]. 化学进展, 2009, 21(增刊1):534-539. |
[13] | 丁智晖, 董子萱, 于水利. 难降解有机物质的生物降解技术分析[J]. 当代化工研究, 2018(1):49-51. |
[14] | 王竞, 周集体, 张劲松, 等. 假单胞菌JX165及其完整细胞对硝基苯的好氧降解[J]. 中国环境科学, 2001, 21(2):144-147. |
[15] | 黄爱群. 氯酚/硝基苯厌氧降解体系中微生物种群结构研究[D]. 上海: 同济大学, 2008. |
[16] | 镇达. Pseudomonas putida ZWL73降解4-氯硝基苯的研究[D]. 武汉: 中国科学院研究生院(武汉病毒研究所), 2006. |
[17] | 陈娅婷, 李芳柏, 李晓敏. 水稻土嗜中性微好氧亚铁氧化菌多样性及微生物成矿研究[J]. 生态环境学报, 2016, 25(4):547-554. |
[18] | 李爽, 李晓敏, 李芳柏. Fe(Ⅱ)对反硝化过程及其功能微生物群落的影响[J]. 中国环境科学, 2018, 38(1):263-274. |
[19] |
LI X M, ZHANG W, LIU T X, et al. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil[J]. Soil Biology and Biochemistry, 2016, 94:70-79.
DOI URL |
[20] |
MEULENBERG R, PEPI M, DE BONT J A M. Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol[J]. Biodegradation, 1996, 7(4):303-311.
DOI URL |
[21] | 张倩, 吕红, 周杨, 等. Pseudomonas sp.HS-2厌氧转化双酚F及疏水性蒽醌类化合物的促进作用[J]. 环境科学学报, 2019, 39(9):2938-2944. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | YANG Zheng, PENG Min, ZHAO Chuandong, YANG Ke, LIU Fei, LI Kuo, ZHOU Yalong, TANG Shiqi, MA Honghong, ZHANG Qing, CHENG Hangxin. The study of geochemical background and baseline for 54 chemical indicators in Chinese soil [J]. Earth Science Frontiers, 2024, 31(4): 380-402. |
[3] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[4] | GUO Xuehui, HUANG Renliang, WAN Jianhua. Heavy metal pollution in agricultural land around a tailings pond, northern Hubei and ecological and human health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 77-92. |
[5] | DONG Xin, HU Haoran, ZHANG Xiaoqing, REN Dajun, ZHANG Shuqin. A Meta-analysis of the distribution characteristics and ecological risk of heavy metals in mining areas [J]. Earth Science Frontiers, 2024, 31(2): 93-102. |
[6] | ZHAO Bin, YANG Yang, ZHANG Hao, JIN Yuanliang, HOU Deyi. Hierarchical technology system for the risk control of mercury contaminated sites [J]. Earth Science Frontiers, 2024, 31(2): 1-12. |
[7] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[8] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[9] | SUN Xiaoyi, WANG Meng, QIN Luyao, YU Lei, WANG Jing, CHEN Shibao. Toxicity thresholds (ECx) for Cr in soils and prediction models [J]. Earth Science Frontiers, 2024, 31(2): 121-129. |
[10] | DING Changfeng, ZHOU Zhigao, WANG Yurong, ZHANG Taolin, WANG Xingxiang. Environmental criteria for cadmium in soils based on ecological safety considerations in China [J]. Earth Science Frontiers, 2024, 31(2): 130-136. |
[11] | ZHANG Jingyuan, WANG Xuedong, LIANG Lichuan, DUAN Guilan. Derivation of ecotoxicity thresholds for Co in soils in China [J]. Earth Science Frontiers, 2024, 31(2): 137-146. |
[12] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[13] | ZHENG Jiarui, LENG Wenpeng, WANG Jiajia, ZHI Liqin, WANG Shuo, LI Jiabin, GUO Peng, WEI Wenxia, SONG Yun. Bioremediation technologies for cleaning up chlorinated-hydrocarbon contaminated sites—a review [J]. Earth Science Frontiers, 2024, 31(2): 157-172. |
[14] | LEI Ming, ZHOU Yimin, HUANG Darui, HUANG Yayuan, WANG Xinqi, LI Bingyu, DU Huihui, LIU Xiaoli, TIE Boqing. Prevention and control of heavy metal contamination in cropland and in commercial rice in Hunan Province: Current status and practical considerations [J]. Earth Science Frontiers, 2024, 31(2): 173-182. |
[15] | LIU He, SONG Shuxian, SUN Mei, LI Shuangshuang, YU Xiaojing, DAI Jiulan. Microplastics in soils and plants: Current research status and progress on detection methods [J]. Earth Science Frontiers, 2024, 31(2): 183-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||