Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 59-67.DOI: 10.13745/j.esf.sf.2021.2.10
Previous Articles Next Articles
LIU Yanjun(), MA Teng*(), DU Yao, LIU Rui
Received:
2020-04-20
Revised:
2020-08-20
Online:
2021-09-25
Published:
2021-10-29
Contact:
MA Teng
CLC Number:
LIU Yanjun, MA Teng, DU Yao, LIU Rui. Compaction of clay aquitard: Principle, technology and hydrogeological significanc[J]. Earth Science Frontiers, 2021, 28(5): 59-67.
[1] | 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2011. |
[2] |
NEUZIL C E. Groundwater flow in low-permeability environments[J]. Water Resources Research, 1986, 22(8):1163-1195.
DOI URL |
[3] |
XUE Y Q, ZHANG Y, YE S J, et al. Land subsidence in China[J]. Environmental Geology, 2005, 48(6):713-720.
DOI URL |
[4] | 李平, 金奕潼, 赖建英, 等. 负压条件下土体渗流固结特性研究综述[J]. 河海大学学报(自然科学版), 2016, 44(2):115-121. |
[5] | WEAVER C E. Clays, muds, and shales[M]. Amsterdam: Elsevier, 1989. |
[6] | MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. Hoboken: John Wiley & Sons, 2005. |
[7] |
HUBERT F, CANER L, MEUNIER A, et al. Advances in characterization of soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting[J]. European Journal of Soil Science, 2009, 60(6):1093-1105.
DOI URL |
[8] | HOLTZ R D, KOVACS W D, SHEAHAN T C. An introduction to geotechnical engineering[M]. 2nd ed. Upper Saddle River: Prentice-Hall, 2010. |
[9] |
BLATT H. Determination of mean sediment thickness in the crust: a sedimentological method[J]. Geological Society of America Bulletin, 1970, 81(1):255-262.
DOI URL |
[10] | MACKENZIE F T, GARRELS R M. Evolution of sedimentary rocks[M]. New York: Norton, 1971. |
[11] | HANTUSH M S, JACOB C E. Plane potential flow of ground water with linear leakage[J]. Eos, Transactions American Geophysical Union, 1954, 35(6):917-936. |
[12] |
CHIODINI G F, FRONDINI D M, KERRICK J, et al. Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing[J]. Chemical Geology, 1999, 159(1/2/3/4):205-222.
DOI URL |
[13] |
LOVE A J, HERCZEG A L, SAMPSON L, et al. Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia[J]. Water Resources Research, 2000, 36(6):1561-1574.
DOI URL |
[14] |
CHEN C M, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23):13751-13759.
DOI URL |
[15] |
BEYLICH A, OBERHOLZER H R, SCHRADER S, et al. Evaluation of soil compaction effects on soil biota and soil biological processes in soils[J]. Soil and Tillage Research, 2010, 109(2):133-143.
DOI URL |
[16] |
PARKER B L, CHAPMAN S W, GUILBEAULT M A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation[J]. Journal of Contaminant Hydrology, 2008, 102(1/2):86-104.
DOI URL |
[17] | WANG Y, JIAO J J, CHERRY J A, et al. Contribution of the aquitard to the regional ground water hydrogeochemistry of the underlying confined aquifer in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 461/462:663-671. |
[18] |
BOURG A C M, BERTIN C. Biogeochemical processes during the infiltration of river water into an alluvial aquifer[J]. Environmental Science & Technology, 1993, 27(4):661-666.
DOI URL |
[19] |
LIU C X, WILLIAM P B. Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware[J]. Water Resources Research, 1999, 35(7):1975-1985.
DOI URL |
[20] | TEATINI P, TOSI L, STROZZI T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8). https://doi.org/10.1029/2010JB008122. |
[21] |
ZOCCARATO C, MINDERHOUD P S, TEATINI P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam[J]. Scientific Reports, 2018, 8(1):11437.
DOI URL |
[22] | 刘国勇, 金之钧, 张刘平. 碎屑岩成岩压实作用模拟实验研究[J]. 2006, 24(3):407-413. |
[23] |
WICKS C M, HERMAN J S. The effect of a confining unit on the geochemical evolution of ground water in the Upper Floridan aquifer system[J]. Journal of Hydrology, 1994, 153(1):139-155.
DOI URL |
[24] |
KONIKOW L F, KENDY E. Groundwater depletion: a global problem[J]. Hydrogeology Journal, 2005, 13(1):317-320.
DOI URL |
[25] | 周志芳, 徐海洋. 一种实验确定弱透水层水文地质参数的原理与方法[J]. 水文地质环境地质, 2014, 41(5):1-4. |
[26] |
GALLOWAY D L, HUDNUT K W, INGEBRITSEN S E, et al. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34(10):2573-2585.
DOI URL |
[27] |
SU C, CHEN Z Y, CHEN J, et al. Mechanics of aquitard drainage by aquifer-system compaction and its implications for water-management in the North China Plain[J]. Journal of Earth Science, 2014, 25(3):598-604.
DOI URL |
[28] | GALLOWAY D L, JONES D R, INGEBRITSEN S E. Land subsidence in the United States[M]. Reston: US Geological Survey, 1999. |
[29] |
OVANDO-SHELLEY E, OSSA A, ROMO M P. The sinking of Mexico City: its effects on soil properties and seismic response[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(4):333-343.
DOI URL |
[30] | SHI C X, ZHANG D, YOU L Y, et al. Land subsidence as a result of sediment consolidation in the Yellow River delta[J]. Journal Coast Research, 2007, 23(1):173-181. |
[31] | TERZAGHI K. Principles of soil mechanics: IV settlement and consolidation of clay[J]. Engineering News-Record, 1925, 95(3):874-878. |
[32] |
MEINZER O E. Compressibility and elasticity of artesian aquifers[J]. Economic Geology, 1928, 23(3):263-291.
DOI URL |
[33] | BENHAMIDA A, DJERAN-MAIGRE I, DUMONTET H, et al. Clay compaction modelling by homogenization theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(7/8):996-1005. |
[34] | IRELAND R L, POLAND J F, RILEY F S. Land subsidence in the San Joaquin Valley, California, as of 1980[M]. Washington: US Government Printing Office, 1984. |
[35] | HANSON R T. Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona[M]. Reston: US Geological Survey, 1989. |
[36] | SNEED M, GALLOWAY D L. Aquifer-system compaction and land subsidence: measurements, analyses, and simulations: the Holly site, Edwards Air Force Base, Antelope Valley, California[M]. Reston: US Geological Survey, 2000. |
[37] | POTTER P E, MAYNARD J B, DEPETRIS P J. Mud and mudstones: introduction and overview[M]. New York: Springer, 2005. |
[38] | 金振民. 我国高温高压实验研究进展和展望[J]. 地球物理学报, 1997, 40(增刊1):70-81. |
[39] | 曾贻善. 实验地球化学[M]. 2版. 北京: 北京大学出版社, 2003. |
[40] | 施良骐, 宋瑞卿, 吴秀泉. 气液两用高温高压岩石三轴实验容器的研制[J]. 岩石力学与工程学报, 1986, 5(3):301-308. |
[41] | 周永胜, 何昌荣. 大陆岩石圈流变研究进展与高温高压流变实验现状[J]. 地球物理学进展, 2004, 19(2):246-254. |
[42] | 孙悦, 毕延, 董越, 等. 六面顶压机集中控制系统的组态设计[J]. 高压物理学报, 2003, 17(3):235-240. |
[43] |
GUTIERREZ M, WANGEN M. Modeling of compaction and overpressuring in sedimentary basins[J]. Marine and Petroleum Geology, 2005, 22(3):351-363.
DOI URL |
[44] | BURLEY S D. Models of burial diagenesis for deep exploration plays in Jurassic fault traps of the Central and Northern North Sea[C]//Geological Society, London, Petroleum Geology Conference Series. London: Geological Society, 1993, 4(1):1353-1375. |
[45] |
ENGLAND W A, MACKENZIE A S, MANN D M, et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society, 1987, 144(2):327-347.
DOI URL |
[46] |
BJØRLYKKE K, HØEG K. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins[J]. Marine and Petroleum Geology, 1997, 14(3):267-276.
DOI URL |
[47] |
VANBALEN R T, SKAR T. The influence of faults and intraplatestresses on the overpressure evolution of the Halten Terrace, mid-Norwegian margin[J]. Tectonophysics, 2000, 320(3/4):331-345.
DOI URL |
[48] |
LEWAN M D, ROY S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J]. Organic Geochemistry, 2011, 42(1):31-41.
DOI URL |
[49] | SANDBAEKKEN G, BERRE T, LACASSE S. Oedometer testing at the Norwegian Geotechnical Institute[M//YONG R, TOWNSEND F. Consolidation of soils: testing and evaluation. ]West Conshohocken: ASTM International, 1986. |
[50] |
MONDOL N H, BJØRLYKKE K, JAHREN J, et al. Experimental mechanical compaction of clay mineral aggregates: changes in physical properties of mudstones during burial[J]. Marine and Petroleum Geology, 2007, 24(5):289-311.
DOI URL |
[51] |
LANGROUDI A A, YASROBI S S. Drainage controlled uniaxial swelling cell[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(4):357-364.
DOI URL |
[52] |
KOOCHAK Z M, MONDOL N H, JAHREN J. Experimental mechanical compaction of sands and sand-clay mixtures: a study to investigate evolution of rock properties with full control on mineralogy and rock texture[J]. Geophysical Prospecting, 2016, 64(4):915-941.
DOI URL |
[53] | BISHOP A W. The experimental study of partly saturated soil in the triaxial apparatus[C]//Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. Paris: Dunod, 1961, 1:13-21. |
[54] |
CUI Y J, DELAGE P. Yeilding and plastic behaviour of an unsaturated compacted silt[J]. Géotechnique, 1996, 46(2):291-311.
DOI URL |
[55] |
TOYOTA H, SAKAI N, NISHIMURA T. Effects of stress history due to unsaturation and drainage condition on shear properties of unsaturated cohesive soil[J]. Soils and Foundations, 2001, 41(1):13-24.
DOI URL |
[56] |
NG C W, ZHAN L T, CUI Y J. A new simple system for measuring volume changes in unsaturated soils[J]. Canadian Geotechnical Journal, 2002, 39(3):757-764.
DOI URL |
[57] | YIN J H. A double cell triaxial system for continuous measurement of volume changes of an unsaturated or saturated soil specimen in triaxial testing[J]. Geotechnical Testing Journal, 2003, 26(3):353-358. |
[58] | SIVAKUMAR R, SIVAKUMAR V, BLATZ J, et al. Twin-cell stress path apparatus for testing unsaturated soils[J]. Geotechnical Testing Journal, 2005, 29(2):175-179. |
[59] | ALABDULLAH J, LINS Y, SCHANZ T. Shear strength of unsaturated sand under plane strain conditions[C]//BUZZI O, FITYUS S, SHENG D. Proceeding of the 4th Asia-Pacific Conference on Unsaturated Soils. London: Taylor & Francis, 2009: 129-133. |
[60] |
NEVEUX L, GRGIC D, CARPENTIER C, et al. Experimental simulation of chemomechanical processes during deep burial diagenesis of carbonate rocks[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2):984-1007.
DOI URL |
[61] | DHATT G, LEFRANÇOIS E, TOUZOT G. Finite element method[M]. Hoboken: John Wiley & Sons, 2012. |
[62] | GLUYAS J, CADE C A. Prediction of porosity in compacted sands[M]//KUPECZ J A, GLUYAS J, BLOCH S. Reservoir quality prediction in sandstones and carbonates. Tulsa: American Association of Petroleum Geologists, 1997, 69:19-28. |
[63] | 林承焰, 王文广, 董春梅, 等. 砂岩压实作用研究现状及进展[J]. 沉积学报, 2020, 38(3):538-553. |
[64] | COLOMBO I, NOBILE F, PORTA G, et al. Uncertainty quantification of geochemical and mechanical compaction in layered sedimentary basins[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328:122-146. |
[65] | ATHY L F. Density, porosity, and compaction of sedimentary rock[J]. American Association of Petroleum Geologists Bulletin, 1930, 14(1):1-24. |
[66] |
EHRENBERG S N, NADEAU P H, STEEN Ø. Petroleum reservoir porosity versus depth: influence of geological age[J]. AAPG Bulletin, 2009, 93(10):1281-1296.
DOI URL |
[67] |
FORMAGGIA L, GUADAGNINI A, IMPERIALI I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geoscience, 2013, 17(1):25-42.
DOI URL |
[68] |
FAWAD M, MONDOL N H, JAHREN J, et al. Mechanical compaction and ultrasonic velocity of sands with different texture and mineralogical composition[J]. Geophysical Prospecting, 2011, 59(4):697-720.
DOI URL |
[69] |
NOORAIEPOUR M, MONDOL N H, HELLEVANG H, et al. Experimental mechanical compaction of reconstituted shale and mudstone aggregates: investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences[J]. Marine and Petroleum Geology, 2017, 80:265-292.
DOI URL |
[70] | LIU Y, MA T, CHEN J, et al. Contribution of clay-aquitard to aquifer iron concentrations and water quality[J]. Science of The Total Environment, 2020, 741:140061. |
[71] |
HE J, MA T, DENG Y M, et al. Environmental geochemistry of highly arsenical groundwater at western Hetao plain, Inner Mongolia[J]. Frontiers of Earth Science in China, 2009, 3(1):63-72.
DOI URL |
[72] |
WANG Y X, MA T, RYZHENKO B N, et al. Model for the formation of arsenic contamination in groundwater. 1. Datong Basin, China[J]. Geochemistry International, 2009, 47(7):713-724.
DOI URL |
[73] | MOZUMDER M R H, MICHAEL H A., MIHAJLOV I, et al. Origin of groundwater arsenic in a rural Pleistocene aquifer in Bangladesh depressurized by distal municipal pumping[J]. Water Resources Research, 2020, 56(7): e2020WR027178. |
[74] |
MIHAJLOV I, MOZUMDER M R H, BOSTICK B C , et al. Arsenic contamination of Bangladesh aquifers exacerbated by clay layers[J]. Nature Communications, 2020, 11(1):1-9.
DOI URL |
[75] | 罗小龙. 含水率对黏性土体力学强度的影响[J]. 岩土工程界, 2002, 7(1):52-53. |
[76] | 王大纯, 张人权. 孔隙承压地下水的资源评价和地面沉降的关系[J]. 水文地质工程地质, 1981, 8(3):1-3, 8. |
[77] | SNEED M, BRANDT J T, SOLT M. Land subsidence along the California Aqueduct in west-central San Joaquin Valley, California, 2003-10[R]. Reston: US Geological Survey, 2018. |
[78] | POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Science, 2008, 454(7203):505-508. |
[79] |
CHAUSSARD E, FARR T G. A new method for isolating elastic from inelastic deformation in aquifer systems: application to the San Joaquin Valley, CA[J]. Geophysical Research Letters, 2019, 46(19):10800-10809.
DOI URL |
[80] | GALLOWAY D, RILEY F S . San Joaquin Valley, California: largest human alteration of the Earth’s surface[M]. Menlo Park: US Government Printing Office, 2019, 1182:23-34. |
[81] |
SHI M, GAO Z, WAN L, et al. Desalination of saline groundwater by a weakly permeable clay stratum: a case study in the North China Plain[J]. Environmental Earth Sciences, 2019, 78(17):547.
DOI URL |
[82] |
AUDET D M. Mathematical modelling of gravitational compaction and clay dehydration in thick sediment layers[J]. Geophysical Journal International, 1995, 122(1):283-298.
DOI URL |
[83] |
RUSER R, FLESSA H, RUSSOW R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2):263-274.
DOI URL |
[84] |
LIU Y, MA T, DU Y. Compaction of muddy sediment and its significance to groundwater chemistry[J]. Procedia Earth and Planetary Science, 2017, 17:392-395.
DOI URL |
[85] | DASGUPTA T, MUKHERJEE S. Compaction of sediments and different compaction models[M]//SWENNEN R. Sediment Compaction and Applications in Petroleum Geoscience. Berlin: Springer, 2020: 1-8. |
[86] |
REDDY K R, URBANEK A, KHODADOUST A P. Electroosmotic dewatering of dredged sediments: bench-scale investigation[J]. Journal of Environmental Management, 2006, 78(2):200-208.
DOI URL |
[87] |
CARMAN R, RAHM L. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper[J]. Journal of Sea Research, 1997, 37(1/2):25-47.
DOI URL |
[88] |
SCHULZ H D, DAHMKE A, SCHINZEL U, et al. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic[J]. Geochimica et Cosmochimica Acta, 1994, 58(9):2041-2060.
DOI URL |
[89] | HENSEN C, ZABEL M, SCHULZ H N. Benthic cycling of oxygen, nitrogen and phosphorus[M]. Berlin & Heidelberg: Springer, 2006: 207-240. |
[90] | SAHA P K, HOSSAIN M D. Assessment of heavy metal contamination and sediment quality in the Buriganga River, Bangladesh[C]//Proceeding of International Conference on Environmental Science and Technology. Singapore: IACSIT Press, 2011: 26-28. |
[91] |
KENNEDY A D. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synjournal[J]. Arctic and Alpine Research, 1993, 25(4):308-315.
DOI URL |
[92] |
BELNAP J, WELTER J R, GRIMM N B, et al. Linkages between microbial and hydrologic processes in arid and semiarid watersheds[J]. Ecology, 2005, 86(2):298-307.
DOI URL |
[93] |
ZEGLIN L H, DAHM C N, BARRETT J E, et al. Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams[J]. Microbial ecology, 2011, 61(3):543-556.
DOI URL |
[94] | 刘邓. 不同厌氧微生物功能群对黏土矿物结构Fe(Ⅲ)的还原作用及其矿物转变[D]. 武汉: 中国地质大学(武汉), 2012. |
[95] | 郑浚茂, 应凤祥. 煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J]. 石油学报, 1997, 18(4):19-24. |
[96] |
POESEN J, DE LUNA E, FRANCA A, et al. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content[J]. Catena, 1999, 36(4):315-329.
DOI URL |
[97] |
SEEGER M, ERREA M P, BEGUERIA S, et al. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees[J]. Journal of Hydrology, 2004, 288(3/4):299-311.
DOI URL |
[98] |
MCDOWELL R W, SHARPLEY A N. Approximating phosphorus release from soils to surface runoff and subsurface drainage[J]. Journal of Environmental Quality, 2001, 30(2):508-520.
DOI URL |
[99] |
RUBOL S, MANZONI S, BELLIN A, et al. Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)[J]. Advances in Water Resources, 2013, 62:106-124.
DOI URL |
[100] |
ZiADAT F M, TAIMEH A Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment[J]. Land Degradation & Development, 2013, 24(6):582-590.
DOI URL |
[101] |
BLASCO J, SÁENZ V, GÓMEZ-PARRA A . Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south-west of the Iberian Peninsula[J]. Science of the Total Environment, 2000, 247(2/3):189-199.
DOI URL |
[102] |
VON DER HEYDEN C J, NEW M G. Sediment chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potential[J]. Journal of Geochemical Exploration, 2004, 82(1/2/3):35-57.
DOI URL |
[103] |
GUERRERO A O, CHERRY J A, RUDOLPH D L. Large-scale aquitard consolidation near Mexico City[J]. Groundwater, 2005, 31(5):708-718.
DOI URL |
[104] |
THORSTENSON D C, FISHER D W, CROFT M G. The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota[J]. Water Resource Research, 1979, 15(6):1479-1498.
DOI URL |
[105] |
HENDRY M J, WOODBURY A D. Clay aquitards as archives of Holocenepaleo climate: δ18O and thermal profiling[J]. Groundwater, 2007, 45(6):683-691.
DOI URL |
[1] | YANG Jiayi, JIANG Fuqing, YAN Yu, ZHENG Hao, CHANG Fengming. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene [J]. Earth Science Frontiers, 2022, 29(4): 73-83. |
[2] | WANG Guangcai, WANG Yanxin, LIU Fei, GUO Huaming. Advances and trends in hydrogeochemical studies: Insights from bibliometric analysis [J]. Earth Science Frontiers, 2022, 29(3): 25-36. |
[3] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
[4] | GUO Dongyi, XIA Qingyin, DONG Hailiang, WANG Xi, ZENG Qiang, ZHAO Yu. Antibacterial clay minerals: Research advances and outlook [J]. Earth Science Frontiers, 2022, 29(1): 470-485. |
[5] | LIU Yulong,WU Weiyang,FAN Junxin,CHEN Honghan. Anti-seepage performance for oily pollutants in compacted clay layer of Yunnan Province, China [J]. Earth Science Frontiers, 2019, 26(4): 273-278. |
[6] | LIU Chenglin,PING Yingqi,GUO Zeqing,TIAN Jixian,HONG Weiyu,ZHANG Wei,HUO Junzhou. Genetic mechanism of overpressure in the Paleogene and Neogene in the northwestern Qaidam Basin [J]. Earth Science Frontiers, 2019, 26(3): 211-219. |
[7] | WU Chu,WU Xiong,ZHANG Yanshuai,DONG Yanyan,ZHU Pengcheng. Distribution characteristics and genesis of highfluoride groundwater in the Niuxin Mountain, Qinhuangdao. [J]. Earth Science Frontiers, 2018, 25(4): 307-315. |
[8] | MAO Re-Yu, GUO Hua-Meng-*, GU Yong-Feng, JIANG Yu-Xiao, CAO Yong-Sheng, DIAO Wei-Guang, WANG Zhen. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin,Inner Mongolia. [J]. Earth Science Frontiers, 2016, 23(2): 260-268. |
[9] | SUN Xu-Hui, LI Fu-Chun, SHI Huan-Zhi, DAI Jing-Yu, TUN Feng, JIN Zhang-Dong. Characteristics of humic substances in soil and its implication to longterm stability of organic carbon: A case of Luochuan loess profile [J]. Earth Science Frontiers, 2011, 18(6): 117-124. |
[10] | . A study of contact metamorphism of Late Paleozoic strata in the Middle of Inner Mongolia. [J]. Earth Science Frontiers, 2011, 18(2): 223-230. |
[11] | HE Xiao-Hu, LIU Shen, LIANG Quan-Qing, LI Dun-Liang, JI Yu. The influence of burial history on mudstone compaction. [J]. Earth Science Frontiers, 2010, 17(4): 167-173. |
[12] | WANG Shi-Jie, LUO Wei-Jun, LIU Xiu-Meng, XIE Xin-Nai, ZHOU Yun-Chao, LI Ting-Yu, LIU Qi-Meng. Effects of hydrogeochemistry on δ13CDIC values of drip water in Qixing Cave, Guizhou, China and their implications. [J]. Earth Science Frontiers, 2009, 16(6): 66-76. |
[13] | TIAN Xin XIANG Fang LUO Lai SONG Jian-Chun. Climate significance of continental special deposits. [J]. Earth Science Frontiers, 2009, 16(5): 71-78. |
[14] | TU Chao YANG Zhong-Fang ZHONG Jian CHENG Xin-Ban. Factors affecting the geochemical behavior of heavy metal elements Pb and Cd in soil. [J]. Earth Science Frontiers, 2008, 15(5): 67-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||