地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 484-494.DOI: 10.13745/j.esf.sf.2024.2.21
钟林健(), 郭朝晖*(
), 谢慧民, 黄驰岳, 高梓伦, 梁学超, 徐锐
收稿日期:
2023-12-05
修回日期:
2024-01-11
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*郭朝晖(1971—),男,教授,博士生导师,主要从事场地土壤/地下水污染控制与修复方面的研究工作。E-mail: zhguo@csu.edu.cn
作者简介:
钟林健(1998—),男,硕士研究生,环境科学与工程专业。E-mail: 793838410@qq.com
基金资助:
ZHONG Linjian(), GUO Zhaohui*(
), XIE Huimin, HUANG Chiyue, GAO Zilun, LIANG Xuechao, XU Rui
Received:
2023-12-05
Revised:
2024-01-11
Online:
2025-03-25
Published:
2025-03-25
摘要:
自然降水易引起矿区地下水位变化,造成尾矿及矿区土壤中重金属污染风险加剧。本文通过模拟不同地下水位条件,研究地下水位对尾矿中重金属释放及其在土壤中吸附行为的影响。研究结果表明,地下水位显著变化明显促使尾矿中Cd、Pb和Zn等重金属释放;持续高地下水位条件更易导致尾矿中重金属在表层土壤中累积;水位波动条件明显有利于尾矿中重金属向深层土壤中迁移;土壤水中Cd、Pb和Zn对地下水有较大的输入风险。在土壤处于持续饱和状态条件下,土壤中残渣态Cd和Pb向活性较强的酸可提取态转化;矿区土壤溶液中Eh呈下降趋势,促使体系中Fe3+还原、土壤有机质还原分解和Cd、Pb释放。土壤中无定形态氧化铁与重金属的吸附和共沉淀降低了尾矿和土壤中重金属的迁移风险。然而,在地下水位变化频繁的区域,特别是在氧气有限、富含有机质的包气带,土壤中重金属释放进入地下水的潜在风险明显提高。上述研究结果表明,管控矿区地下水位明显变化对防控矿区重金属潜在污染风险具有重要意义。
中图分类号:
钟林健, 郭朝晖, 谢慧民, 黄驰岳, 高梓伦, 梁学超, 徐锐. 地下水位对尾矿中重金属释放及其在土壤中吸附的影响研究[J]. 地学前缘, 2025, 32(2): 484-494.
ZHONG Linjian, GUO Zhaohui, XIE Huimin, HUANG Chiyue, GAO Zilun, LIANG Xuechao, XU Rui. The influence of water table on the release of heavy metals from tailings and their adsorption in soil[J]. Earth Science Frontiers, 2025, 32(2): 484-494.
样品 | pH | 有机质含量/% | CEC/ (cmol·kg-1) | 重金属含量/(mg·kg-1) | ||||
---|---|---|---|---|---|---|---|---|
As | Cr | Cd | Pb | Zn | ||||
尾矿 | 3.51 | — | — | 5 | 29 | 220 | 8 700 | 10 400 |
土壤 | 4.50 | 2.70 | 12.5 | 22 | 210 | 2 | 48.5 | 235 |
表1 供试尾矿及其周边土壤重金属含量及主要理化性质
Table 1 Heavy metal content and main physical and chemical properties of tested tailings and surrounding soil
样品 | pH | 有机质含量/% | CEC/ (cmol·kg-1) | 重金属含量/(mg·kg-1) | ||||
---|---|---|---|---|---|---|---|---|
As | Cr | Cd | Pb | Zn | ||||
尾矿 | 3.51 | — | — | 5 | 29 | 220 | 8 700 | 10 400 |
土壤 | 4.50 | 2.70 | 12.5 | 22 | 210 | 2 | 48.5 | 235 |
图4 不同地下水位处理56 d后剖面土壤Cd (a)、Pb (b)和Zn (c)含量
Fig.4 The concentration of Cd (a), Pb (b) and Zn (c) in soil profile after 56 days’ different water table treatment
重金属 | 处理 | 实验后土壤中重金属变化率/% | ||
---|---|---|---|---|
0~5 cm | 5~10 cm | 10~15 cm | ||
Cd | HW | 90.63 | 28.13 | -15.63 |
LW | 59.83 | 0 | -31.25 | |
DW | 56.25 | 3.13 | 3.13 | |
CK | 25 | -9.38 | -34.38 | |
Pb | HW | 1096.13 | 438.79 | 6.25 |
LW | 548.45 | 169.72 | -36.02 | |
DW | 942.07 | 675 | 30.41 | |
CK | 29.51 | 17.53 | -8.38 | |
Zn | HW | 393.96 | 238.50 | 79.80 |
LW | 263.11 | 79.02 | 68.70 | |
DW | 272.19 | 133.52 | 91.60 | |
CK | 331.62 | 77.01 | 32.47 |
表2 不同地下水位处理56 d后剖面土壤Cd、Pb和Zn变化率
Table 2 The change rate of Cd, Pb and Zn in soil profile after 56 days’ different water table treatment
重金属 | 处理 | 实验后土壤中重金属变化率/% | ||
---|---|---|---|---|
0~5 cm | 5~10 cm | 10~15 cm | ||
Cd | HW | 90.63 | 28.13 | -15.63 |
LW | 59.83 | 0 | -31.25 | |
DW | 56.25 | 3.13 | 3.13 | |
CK | 25 | -9.38 | -34.38 | |
Pb | HW | 1096.13 | 438.79 | 6.25 |
LW | 548.45 | 169.72 | -36.02 | |
DW | 942.07 | 675 | 30.41 | |
CK | 29.51 | 17.53 | -8.38 | |
Zn | HW | 393.96 | 238.50 | 79.80 |
LW | 263.11 | 79.02 | 68.70 | |
DW | 272.19 | 133.52 | 91.60 | |
CK | 331.62 | 77.01 | 32.47 |
图6 处理56 d后Cd、Pb和Zn在剖面土壤中的形态分布 a—0~5 cm;b—5~10 cm;c—10~15 cm。
Fig.6 The chemical forms of Cd, Pb and Zn in soil profile after 56 days’ experiment: (a)0-5 cm; (b)5-10 cm; (c)10-15 cm
图8 处理56 d后剖面土壤中铁氧化物含量 a—游离态氧化铁;b—无定形态氧化铁;c—晶体态氧化铁。
Fig.8 The iron oxide content in soil profile after 56 days’ experiment: (a) free iron oxide; (b) amorphous iron oxide; (c) crystalline iron oxid
[1] | 蔡永兵, 邵俐, 范行军, 等. 安徽花山尾矿库溃坝污染农田土壤中As、Sb的释放及垂向迁移特征[J]. 环境化学, 2020, 39(9): 2479-2489. |
[2] | 景称心, 孔秋梅, 冯志刚. 中国南方某铀尾矿库周缘土壤重金属污染研究[J]. 中国环境科学, 2020, 40(1): 338-349. |
[3] | 郑锦一, 张学洪, 刘杰, 等. 广西老厂铅锌尾矿重金属动态纵向释放迁移规律[J]. 桂林理工大学学报, 2020, 40(3): 580-586. |
[4] | ZHANG Z Y, FURMAN A. Soil redox dynamics under dynamic hydrologic regimes-a review[J]. Science of the Total Environment, 2021, 763: 143026. |
[5] | ZHANG L W, SHANG Z B, GUO K X, et al. Speciation analysis and speciation transformation of heavy metal ions in passivation process with thiol-functionalized nano-silica[J]. Chemical Engineering Journal, 2019, 369: 979-987. |
[6] | 杨宾, 罗会龙, 刘士清, 等. 淹水对土壤重金属浸出行为的影响及机制[J]. 环境工程学报, 2019, 13(4): 936-943. |
[7] | KHOEURN K, SAKAGUCHI A, TOMIYAMA S, et al. Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: column study under natural condition[J]. Journal of Geochemical Exploration, 2019, 201: 1-12. |
[8] | XUE P Y, ZHAO Q L, SUN H X, et al. Characteristics of heavy metals in soils and grains of wheat and maize from farmland irrigated with sewage[J]. Environmental Science and Pollution Research, 2019, 26(6): 5554-5563. |
[9] | TRAN T H H, KIM S H, JO H Y, et al. Transient behavior of arsenic in vadose zone under alternating wet and dry conditions: a comparative soil column study[J]. Journal of Hazardous Materials, 2022, 422: 126957. |
[10] | 裴晶晶, 胡南, 张辉, 等. 铀尾矿中不同形态铀释放的影响因素及其相关性[J]. 中国环境科学, 2019, 39(7): 3073-3080. |
[11] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. |
[12] | RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1(1): 57-61. |
[13] | 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676. |
[14] | 张斯宇, 何绪文, 李焱, 等. 铅锌矿区土壤重金属的淋溶试验研究[J]. 矿业科学学报, 2018, 3(4): 406-416. |
[15] | 董颖博, 林海, 刘泉利, 等. 模拟酸雨条件下锡尾矿中重金属As、Zn、Pb的释放规律[J]. 中国有色金属学报, 2015, 25(10): 2921-2928. |
[16] |
OKA M, UCHIDA Y. Heavy metals in slag affect inorganic N dynamics and soil bacterial community structure and function[J]. Environmental Pollution, 2018, 243: 713-722.
DOI PMID |
[17] | CHI Z Y, XIE X J, PI K F, et al. The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone[J]. Science of the Total Environment, 2018, 637: 191-199. |
[18] | 陈安冉. 天津滨海平原碱性盐化土壤包气带中重金属Cd迁移与WSOC相互作用关系研究[D]. 天津: 天津师范大学, 2013. |
[19] | 吕佳芮, 王祖伟, 刘雅明, 等. 干湿交替过程中重金属在碱性盐化表层土壤中的迁移特征[J]. 天津师范大学学报(自然科学版), 2019, 39(5): 57-63. |
[20] | 崔申申, 杜晓丽, 刘殿威, 等. 降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响[J]. 环境化学, 2022, 41(9): 2842-2849. |
[21] | GUO S H, LIU Z L, LI Q S, et al. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying[J]. Chemosphere, 2016, 157: 262-270. |
[22] | LIU Y N, GUO Z H, XIAO X Y, et al. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: a field experiment[J]. Science of the Total Environment, 2017, 576: 292-302. |
[23] | ZHENG S A, ZHENG X Q, CHEN C. Transformation of metal speciation in purple soil as affected by waterlogging[J]. International Journal of Environmental Science and Technology, 2013, 10(2): 351-358. |
[24] | YANARDAĞ I H, ZORNOZA R, BASTIDA F, et al. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability[J]. Geoderma, 2017, 295: 1-9. |
[25] |
YAN M Q, MA J, ZHANG C Y, et al. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China[J]. Chemosphere, 2017, 188: 502-509.
DOI PMID |
[26] |
LI T Q, DI Z Z, YANG X E, et al. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils[J]. Journal of Hazardous Materials, 2011, 192(3): 1616-1622.
DOI PMID |
[27] | RINKLEBE J, SHAHEEN S M, YU K W. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the U.S.A. and Asia[J]. Geoderma, 2016, 270: 21-32. |
[28] | WANG R H, ZHU X F, QIAN W, et al. Pectin adsorption on amorphous Fe/Al hydroxides and its effect on surface charge properties and Cu(II) adsorption[J]. Journal of Soils and Sediments, 2017, 17: 2481-2489. |
[29] |
ZHANG J, HUA P, KREBS P. The influences of dissolved organic matter and surfactant on the desorption of Cu and Zn from road-deposited sediment[J]. Chemosphere, 2016, 150: 63-70.
DOI PMID |
[30] | YU H Y, LIU C P, ZHU J S, et al. Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 2016, 209: 38-45. |
[31] | THOUIN H, BATTAGLIA-BRUNET F, NORINI M P, et al. Influence of environmental changes on the biogeochemistry of arsenic in a soil polluted by the destruction of chemical weapons: a mesocosm study[J]. Science of the Total Environment, 2018, 627: 216-226. |
[32] | ISRAELI Y, EMMANUEL S. Impact of grain size and rock composition on simulated rock weathering[J]. Earth Surface Dynamics, 2018, 6(2): 319-327. |
[33] | WANG G Y, PAN X M, ZHANG S R, et al. Remediation of heavy metal contaminated soil by biodegradable chelator-induced washing: efficiencies and mechanisms[J]. Environmental Research, 2020, 186: 109554. |
[34] | 常春英, 曹浩轩, 陶亮, 等. 淹水和干湿交替对修复后土壤铬的稳定性影响研究[J]. 环境科学研究, 2022, 35(5): 1150-1158. |
[1] | 王汉雨, 周永章, 许娅婷, 王维曦, 曹伟, 刘永强, 贺炬翔, 陆可飞. 基于微服务架构的城市土壤污染物联网监测及可视化系统研发[J]. 地学前缘, 2024, 31(4): 165-182. |
[2] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[3] | 涂春霖, 和成忠, 马一奇, 尹林虎, 陶兰初, 杨明花. 珠江流域沉积物重金属污染特征、生态风险及来源解析[J]. 地学前缘, 2024, 31(3): 410-419. |
[4] | 刘海, 魏伟, 宋阳, 潘杨, 李迎春. 霍邱县城湖泊沉积物重金属污染特征、潜在生态风险及来源[J]. 地学前缘, 2024, 31(3): 420-431. |
[5] | 李杉杉, 张荣, 费杨, 梁家辉, 杨兵, 王萌, 师华定, 陈世宝. Fe对稻田土壤重金属迁移转化影响机制及研究进展[J]. 地学前缘, 2024, 31(2): 103-110. |
[6] | 王萌, 俞磊, 秦璐瑶, 孙晓艺, 王静, 刘佳晓, 陈世宝. 土壤环境基准的科学问题与研究方法:以Cd为例[J]. 地学前缘, 2024, 31(2): 147-156. |
[7] | 雷鸣, 周一敏, 黄大睿, 黄雅媛, 王薪琪, 李冰玉, 杜辉辉, 刘孝利, 铁柏清. 湖南耕地土壤和稻米重金属污染防控实践与思考[J]. 地学前缘, 2024, 31(2): 173-182. |
[8] | 刘永兵, 宿俊杰, 郭威, 王英男, 殷亚秋. 冀北花岗岩地区坡积-冲洪积型污染耕地土壤治理比较研究[J]. 地学前缘, 2024, 31(2): 196-203. |
[9] | 梁慧芝, 郭朝晖, 张云霞, 徐锐. 含砷尾矿中砷铊矿相特征及其释放机制[J]. 地学前缘, 2024, 31(2): 20-30. |
[10] | 丁祥, 袁贝, 杜平, 刘虎鹏, 张云慧, 陈娟. 典型矿冶城市土壤重金属累积驱动因子研究和概率风险评估[J]. 地学前缘, 2024, 31(2): 31-41. |
[11] | 郭学辉, 黄仁亮, 万建华. 冀北山区某有色多金属尾矿库周边农用地重金属污染特征与生态健康风险评价[J]. 地学前缘, 2024, 31(2): 77-92. |
[12] | 董鑫, 胡浩然, 张晓晴, 任大军, 张淑琴. 基于Meta分析的矿区周边土壤重金属污染特征及风险评价[J]. 地学前缘, 2024, 31(2): 93-102. |
[13] | 魏洪斌, 罗明, 张世文, 周鹏飞. 不同生态修复模式对矿业废弃地重金属-微生物影响分析[J]. 地学前缘, 2023, 30(5): 541-552. |
[14] | 宁文婧, 谢先明, 严丽萍. 清远市清城区土壤中重金属的空间分布、来源解析和健康评价:基于PCA和PMF模型的对比[J]. 地学前缘, 2023, 30(4): 470-484. |
[15] | 夏学齐, 季峻峰, 杨忠芳, 卢新哲, 黄春雷, 魏迎春, 徐常艳, 梁卓颖. 母岩类型对土壤和沉积物镉背景的控制: 以贵州为例[J]. 地学前缘, 2022, 29(4): 438-447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||