地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 417-428.DOI: 10.13745/j.esf.sf.2023.9.2

• 非主题来稿选登:人工智能与地质应用 • 上一篇    下一篇

基于机器学习的埃达克质岩构造背景判别研究

张焕宝1(), 贺海洋1,*(), 杨仕教1, 李亚林2, 毕文军3, 韩世礼1, 郭钦鹏1, 杜青1   

  1. 1.南华大学 资源环境与安全工程学院, 湖南 衡阳 421001
    2.中国地质大学(北京) 地球科学与资源学院, 北京 100083
    3.太原理工大学 矿业工程学院, 山西 太原 030024
  • 收稿日期:2023-05-26 修回日期:2023-07-27 出版日期:2024-07-25 发布日期:2024-07-10
  • 通信作者: * 贺海洋(1991—),男,博士,讲师,硕士生导师,主要从事机器学习及大地构造学研究工作。E-mail: hehy@usc.edu.cn
  • 作者简介:张焕宝(1991—),女,博士研究生,主要从事人工智能及大地构造学研究工作。E-mail: 2019000068@usc.edu.cn
  • 基金资助:
    湖南省自然科学基金面上项目(2023JJ30507);湖南省自然科学基金面上项目(2023JJ30506);山西省自然科学基金青年项目(202103021223120);湖南省教育厅科学研究项目(22B0433)

Machine learning-based approach for adakitic rocks tectonic setting determination

ZHANG Huanbao1(), HE Haiyang1,*(), YANG Shijiao1, LI Yalin2, BI Wenjun3, HAN Shili1, GUO Qinpeng1, DU Qing1   

  1. 1. School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
    2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
    3. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2023-05-26 Revised:2023-07-27 Online:2024-07-25 Published:2024-07-10

摘要:

埃达克质岩具有重要的地球动力学和金属成矿意义,其构造背景的准确识别为探讨区域构造-岩浆演化过程提供了重要依据。由于埃达克质岩源区、热源和岩浆产生机制的多样性,传统低维度地球化学手段在识别构造背景时存在局限性。随着地学数据的指数增长和人工智能的发展,机器学习为解决该问题提供了新方法。因此,本文将机器学习与地质大数据相结合,构建高精度埃达克质岩构造背景判别模型和可视化图解。文中收集了1 075条全球埃达克质岩主、微量地球化学数据,使用主成分分析和t分布-随机近邻嵌入等无监督学习方法进行高维数据降维,采用随机森林、支持向量机、人工神经网络和K近邻等机器学习方法进行数据训练,得出准确率为98.5%的高斯核支持向量机埃达克质岩构造背景判别器,并提出Ba-Sr/Nd图解,为汇聚板块边缘、板内火山活动和太古宙克拉通(包括绿岩带)3种构造背景判别提供依据。这项工作将拓展机器学习在埃达克质岩构造背景研究中的应用,为构造-岩浆作用研究带来新的思路。

关键词: 埃达克质岩, 构造背景, 判别图解, 主、微量元素, 大数据分析, 机器学习

Abstract:

Adakitic rocks hold significant geodynamic and metallogenic implications, and accurately determining their tectonic setting is crucial for understanding regional tectonic-magmatic evolution. However, due to the diverse sources, heat regimes, and magma generation mechanisms of adakitic rocks, conventional low-dimensional geochemical methods face limitations in tectonic setting identification. With the exponential growth of geoscience data and advancements in artificial intelligence, machine learning offers a novel approach to address this challenge. In this study, we integrate machine learning with geological big data to develop a high-precision adakitic tectonic setting discrimination model and visual representation. We compiled major and trace elements geochemical data from 1075 adakitic rocks worldwide and employed unsupervised learning techniques such as principal component analysis and t-distributed stochastic neighbor embedding for high-dimensional data reduction. Various machine learning algorithms including random forest, support vector machine, artificial neural network, and K-nearest neighbor were trained. Consequently, we established a Gaussian kernel support vector machine adakitic rock tectonic setting discriminator with 98.5% accuracy and proposed a Ba versus Sr/Nd diagram to delineate three tectonic settings: convergent margin, intraplate volcanism, and Archean craton (comprising greenstone belts). This study broadens the application of machine learning in adakitic rock tectonic setting analysis, offering fresh insights into tectonic-magmatic processes investigation.

Key words: adakitic rock, tectonic setting, discrimination model, major and trace elements, big data analysis, machine learning

中图分类号: