地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 179-190.DOI: 10.13745/j.esf.sf.2022.1.7
雷子炎1,2(), 葛倩1,2,*(
), 陈东1,2, 张泳聪1,2, 韩喜彬1,2, 叶黎明1,2, 边叶萍1,2, 许冬1,2
收稿日期:
2021-09-17
修回日期:
2021-11-18
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
葛倩
作者简介:
雷子炎(1999—),男,硕士研究生,主要从事极地古海洋学研究。E-mail: smhw.lzy@gmail.com
基金资助:
LEI Ziyan1,2(), GE Qian1,2,*(
), CHEN Dong1,2, ZHANG Yongcong1,2, HAN Xibin1,2, YE Liming1,2, BIAN Yeping1,2, XU Dong1,2
Received:
2021-09-17
Revised:
2021-11-18
Online:
2022-07-25
Published:
2022-07-28
Contact:
GE Qian
摘要:
对西南极阿蒙森海A11-02孔沉积物进行粒度和地球化学元素分析,示踪了阿蒙森海沉积物来源,重建了中全新世以来的古气候演化历史。通过对稀土元素北美页岩平均标准化配分曲线以及(La/Yb)N、(Gd/Lu)N、(La/Sm)N等参数的分析和对比,认为A11-02孔沉积物主要来源于玛丽伯德地,而别林斯高晋海也有一定贡献。通过将化学蚀变指数、Na/K、<22.1 μm粒级组分含量以及>63 μm粒级组分含量等相关替代指标与其他古气候记录对比,识别出中全新世以来在阿蒙森海存在4个明显的寒冷阶段(P1-P4)。在时间和空间上,南极地区千年尺度的气候变化具有一致性,主要受日照强度变化和大气环流变化控制。
中图分类号:
雷子炎, 葛倩, 陈东, 张泳聪, 韩喜彬, 叶黎明, 边叶萍, 许冬. 中全新世以来西南极阿蒙森海沉积物来源和古气候意义[J]. 地学前缘, 2022, 29(4): 179-190.
LEI Ziyan, GE Qian, CHEN Dong, ZHANG Yongcong, HAN Xibin, YE Liming, BIAN Yeping, XU Dong. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction[J]. Earth Science Frontiers, 2022, 29(4): 179-190.
图1 A11-02、A11-04和ANA08B/33站位及洋流图(修改自文献[9],左图示阿蒙森海(Amundsen Sea,AS)、别林斯高晋海(Bellingshausen Sea,BS)、松岛海槽(Pine Island Trough,PIT)、多特森冰架(Dotson Ice Shelf,DIS)、南极绕极流(Antarctic Circumpolar Current,ACC)、冰下融水(Glacial Meltwater,GM)、绕极深水(Circumpolar Deep Water,CDW)、沿岸流(Costal Current,CC),右图红框范围、红星和黄星分别代表了研究区、罗斯海(Ross Sea,RS)和南极半岛(Antarctic Peninsula,AP))
Fig.1 Left: locations of cores A11-02, A11-04 and ANA08B/33 in the study area; Right: ocean current map and locations of the study area (red rectangle), the Ross Sea (red star) and the Antarctic Peninsula Sea (yellow star). Modified after [9].
深度/ cm | AMS 14C 年龄/a | 日历年龄范围 (1σ)/Cal a BP | 碳储库 年龄/a | 日历年龄/ Cal a BP | 沉积速率/ (cm·ka-1) |
---|---|---|---|---|---|
0~1 | 4 120±30 | 2 731~3 003 | 900 | 0 | |
15~16 | 4 590±30 | 3 303~3 592 | 900 | 568 | 28.2 |
20~21 | 5 780±30 | 4 823~5 132 | 900 | 2 106 | 3.9 |
30~31 | 7 980±30 | 7 269~7 496 | 900 | 4 509 | 4.6 |
表1 A11-02沉积物测年结果及沉积速率
Table 1 Dating results and deposition rates for sediments from core A11-02
深度/ cm | AMS 14C 年龄/a | 日历年龄范围 (1σ)/Cal a BP | 碳储库 年龄/a | 日历年龄/ Cal a BP | 沉积速率/ (cm·ka-1) |
---|---|---|---|---|---|
0~1 | 4 120±30 | 2 731~3 003 | 900 | 0 | |
15~16 | 4 590±30 | 3 303~3 592 | 900 | 568 | 28.2 |
20~21 | 5 780±30 | 4 823~5 132 | 900 | 2 106 | 3.9 |
30~31 | 7 980±30 | 7 269~7 496 | 900 | 4 509 | 4.6 |
参数 | 平均值 | 范围 | 参数 | 平均值 | 范围 |
---|---|---|---|---|---|
氧化物含量/% | 稀土元素含量/10-6 | ||||
Al2O3 | 15.18 | 13.97~15.76 | ΣREE | 238.31 | 191.77~201.37 |
Fe2O3 | 6.67 | 5.05~7.46 | ΣLREE | 217.54 | 170.95~190.35 |
K2O | 3.14 | 2.84~3.32 | ΣHREE | 20.87 | 19.42~20.03 |
MgO | 2.62 | 2.04~2.75 | ΣLREE/ΣHREE | 9.51 | 8.21~10.47 |
TiO2 | 0.90 | 0.80~0.94 | δCe | 0.63 | 0.62~0.66 |
CaO | 1.61 | 1.52~1.91 | δEu | 1.07 | 1.01~1.08 |
P2O5 | 0.18 | 0.17~0.22 | |||
MnO | 0.11 | 0.07~0.30 | |||
Na2O | 3.65 | 3.44~3.82 |
表2 A11-02孔沉积物元素含量
Table 2 Sediment geochemical data for core A11-02
参数 | 平均值 | 范围 | 参数 | 平均值 | 范围 |
---|---|---|---|---|---|
氧化物含量/% | 稀土元素含量/10-6 | ||||
Al2O3 | 15.18 | 13.97~15.76 | ΣREE | 238.31 | 191.77~201.37 |
Fe2O3 | 6.67 | 5.05~7.46 | ΣLREE | 217.54 | 170.95~190.35 |
K2O | 3.14 | 2.84~3.32 | ΣHREE | 20.87 | 19.42~20.03 |
MgO | 2.62 | 2.04~2.75 | ΣLREE/ΣHREE | 9.51 | 8.21~10.47 |
TiO2 | 0.90 | 0.80~0.94 | δCe | 0.63 | 0.62~0.66 |
CaO | 1.61 | 1.52~1.91 | δEu | 1.07 | 1.01~1.08 |
P2O5 | 0.18 | 0.17~0.22 | |||
MnO | 0.11 | 0.07~0.30 | |||
Na2O | 3.65 | 3.44~3.82 |
参数 | 各参数间相关系数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ΣREE含量 | ΣLREE/ΣHREE | δCe | δEu | (TFe2O3+MnO)/Al2O3 | CIA | Mz | (La/Yb)N | (Gd/Yb)N | |
ΣREE含量 | 1.00 | ||||||||
ΣLREE/ΣHREE | 0.79 | 1.00 | |||||||
δCe | 0.15 | 0.57 | 1.00 | ||||||
δEu | -0.40 | -0.65 | -0.71 | 1.00 | |||||
(TFe2O3+MnO)/Al2O3 | -0.09 | 0.43 | 0.86 | -0.66 | 1.00 | ||||
CIA | 0.58 | 0.66 | 0.69 | -0.60 | 0.40 | 1.00 | |||
Mz | -0.39 | -0.73 | -0.87 | 0.82 | -0.79 | -0.67 | 1.00 | ||
(La/Yb)N | 0.84 | 0.95 | 0.32 | -0.52 | 0.21 | 0.50 | -0.55 | 1.00 | |
(Gd/Yb)N | 0.50 | 0.70 | 0.46 | -0.49 | 0.31 | 0.48 | -0.55 | 0.73 | 1.00 |
表3 稀土元素相关性分析
Table 3 Correlation matrix for rare earth elements
参数 | 各参数间相关系数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ΣREE含量 | ΣLREE/ΣHREE | δCe | δEu | (TFe2O3+MnO)/Al2O3 | CIA | Mz | (La/Yb)N | (Gd/Yb)N | |
ΣREE含量 | 1.00 | ||||||||
ΣLREE/ΣHREE | 0.79 | 1.00 | |||||||
δCe | 0.15 | 0.57 | 1.00 | ||||||
δEu | -0.40 | -0.65 | -0.71 | 1.00 | |||||
(TFe2O3+MnO)/Al2O3 | -0.09 | 0.43 | 0.86 | -0.66 | 1.00 | ||||
CIA | 0.58 | 0.66 | 0.69 | -0.60 | 0.40 | 1.00 | |||
Mz | -0.39 | -0.73 | -0.87 | 0.82 | -0.79 | -0.67 | 1.00 | ||
(La/Yb)N | 0.84 | 0.95 | 0.32 | -0.52 | 0.21 | 0.50 | -0.55 | 1.00 | |
(Gd/Yb)N | 0.50 | 0.70 | 0.46 | -0.49 | 0.31 | 0.48 | -0.55 | 0.73 | 1.00 |
图3 A11-02孔沉积物与阿蒙森海(AS)[9]、别林斯高晋海(BS)[9]、罗斯海(RS)[22-23]、罗斯岛(RSI)[24]和南极半岛(AP)[25⇓⇓-28]等地样品REE的NASC标准化分布型式 样号中上标a代表沉积物,上标b代表火山岩,上标c代表自生矿物。
Fig.3 NASC-normalized REE distribution patterns for sediment (a), volcanic rock (b) or authigenic mineral (c) samples from core A11-02 (this study) and other sites within the study area (adapted from [9,22⇓⇓⇓⇓⇓-28])
图4 REE分异参数源区判别图显示A11-02孔沉积物与阿蒙森海(AS)[9]、别林斯高晋海(BS)[9]、罗斯海(RS)[22-23]、罗斯岛(RSI)[24]和南极半岛(AP)[25⇓⇓-28]等地样品的REE分异参数对比 样号中上标a代表沉积物,上标b代表火山岩,上标c代表自生矿物。
Fig.4 Discrimination diagrams for determination of provenances of sediment (a), volcanic rock (b) or authigenic mineral (c) samples from core A11-02 (this study) and other sites within the study area (adapted from [9,22⇓⇓⇓⇓⇓-28])
组分 | 各元素、粒级组分间载荷 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | Fe2O3 | K2O | MgO | TiO2 | CaO | P2O5 | MnO | Na2O | Mo | Ni | Co | Sr | 黏土 | 粉砂 | 砂 | ||
Al2O3 | 1.00 | ||||||||||||||||
Fe2O3 | 0.43 | 1.00 | |||||||||||||||
K2O | 0.88 | 0.34 | 1.00 | ||||||||||||||
MgO | 0.66 | 0.92 | 0.50 | 1.00 | |||||||||||||
TiO2 | 0.75 | 0.74 | 0.51 | 0.93 | 1.00 | ||||||||||||
CaO | -0.55 | -0.87 | -0.35 | -0.92 | -0.86 | 1.00 | |||||||||||
P2O5 | -0.25 | 0.25 | -0.41 | 0.23 | 0.15 | -0.07 | 1.00 | ||||||||||
MnO | -0.12 | 0.35 | -0.33 | 0.38 | 0.32 | -0.25 | 0.91 | 1.00 | |||||||||
Na2O | 0.46 | 0.57 | 0.44 | 0.65 | 0.53 | -0.43 | 0.30 | 0.34 | 1.00 | ||||||||
Mo | -0.18 | 0.22 | -0.37 | 0.26 | 0.23 | -0.13 | 0.90 | 0.99 | 0.26 | 1.00 | |||||||
Ni | 0.09 | 0.57 | -0.13 | 0.65 | 0.59 | -0.53 | 0.80 | 0.94 | 0.48 | 0.89 | 1.00 | ||||||
Co | -0.13 | 0.43 | -0.39 | 0.45 | 0.38 | -0.36 | 0.91 | 0.97 | 0.35 | 0.93 | 0.95 | 1.00 | |||||
Sr | -0.53 | -0.93 | -0.40 | -0.95 | -0.85 | 0.93 | -0.23 | -0.36 | -0.52 | -0.25 | -0.61 | -0.44 | 1.00 | ||||
黏土 | 0.47 | 0.82 | 0.26 | 0.90 | 0.85 | -0.88 | 0.34 | 0.51 | 0.51 | 0.40 | 0.74 | 0.59 | -0.88 | 1.00 | |||
粉砂 | 0.29 | 0.59 | 0.13 | 0.65 | 0.62 | -0.61 | 0.29 | 0.44 | 0.36 | 0.35 | 0.62 | 0.50 | -0.63 | 0.82 | 1.00 | ||
砂 | -0.43 | -0.78 | -0.23 | -0.86 | -0.81 | 0.83 | -0.34 | -0.51 | -0.48 | -0.41 | -0.73 | -0.58 | 0.84 | -0.99 | -0.91 | 1.00 |
表4 A11-02孔沉积物主、微量元素及各粒级组分相关性矩阵
Table 4 Correlation matrix for major and minor elements and particle size classes in sediments from core A11-02
组分 | 各元素、粒级组分间载荷 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | Fe2O3 | K2O | MgO | TiO2 | CaO | P2O5 | MnO | Na2O | Mo | Ni | Co | Sr | 黏土 | 粉砂 | 砂 | ||
Al2O3 | 1.00 | ||||||||||||||||
Fe2O3 | 0.43 | 1.00 | |||||||||||||||
K2O | 0.88 | 0.34 | 1.00 | ||||||||||||||
MgO | 0.66 | 0.92 | 0.50 | 1.00 | |||||||||||||
TiO2 | 0.75 | 0.74 | 0.51 | 0.93 | 1.00 | ||||||||||||
CaO | -0.55 | -0.87 | -0.35 | -0.92 | -0.86 | 1.00 | |||||||||||
P2O5 | -0.25 | 0.25 | -0.41 | 0.23 | 0.15 | -0.07 | 1.00 | ||||||||||
MnO | -0.12 | 0.35 | -0.33 | 0.38 | 0.32 | -0.25 | 0.91 | 1.00 | |||||||||
Na2O | 0.46 | 0.57 | 0.44 | 0.65 | 0.53 | -0.43 | 0.30 | 0.34 | 1.00 | ||||||||
Mo | -0.18 | 0.22 | -0.37 | 0.26 | 0.23 | -0.13 | 0.90 | 0.99 | 0.26 | 1.00 | |||||||
Ni | 0.09 | 0.57 | -0.13 | 0.65 | 0.59 | -0.53 | 0.80 | 0.94 | 0.48 | 0.89 | 1.00 | ||||||
Co | -0.13 | 0.43 | -0.39 | 0.45 | 0.38 | -0.36 | 0.91 | 0.97 | 0.35 | 0.93 | 0.95 | 1.00 | |||||
Sr | -0.53 | -0.93 | -0.40 | -0.95 | -0.85 | 0.93 | -0.23 | -0.36 | -0.52 | -0.25 | -0.61 | -0.44 | 1.00 | ||||
黏土 | 0.47 | 0.82 | 0.26 | 0.90 | 0.85 | -0.88 | 0.34 | 0.51 | 0.51 | 0.40 | 0.74 | 0.59 | -0.88 | 1.00 | |||
粉砂 | 0.29 | 0.59 | 0.13 | 0.65 | 0.62 | -0.61 | 0.29 | 0.44 | 0.36 | 0.35 | 0.62 | 0.50 | -0.63 | 0.82 | 1.00 | ||
砂 | -0.43 | -0.78 | -0.23 | -0.86 | -0.81 | 0.83 | -0.34 | -0.51 | -0.48 | -0.41 | -0.73 | -0.58 | 0.84 | -0.99 | -0.91 | 1.00 |
组分 | 各因子载荷 | 组分 | 各因子载荷 | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | ||
Al2O3 | 0.41 | -0.25 | 0.80 | Na2O | 0.27 | 0.35 | 0.73 |
Fe2O3 | 0.82 | 0.18 | 0.30 | Mo | 0.12 | 0.96 | -0.04 |
K2O | 0.23 | -0.41 | 0.83 | Ni | 0.51 | 0.84 | 0.10 |
MgO | 0.83 | 0.20 | 0.49 | Co | 0.35 | 0.92 | -0.08 |
TiO2 | 0.78 | 0.14 | 0.50 | Sr | -0.88 | -0.17 | -0.32 |
CaO | -0.92 | -0.03 | -0.24 | 黏土 | 0.91 | 0.31 | 0.20 |
P2O5 | 0.07 | 0.95 | -0.05 | 粉砂 | 0.80 | 0.26 | -0.02 |
MnO | 0.24 | 0.96 | -0.02 | 砂 | -0.91 | -0.31 | -0.14 |
表5 A11-02孔沉积物R型因子分析结果
Table 5 R-type factor analysis of sediments from core A11-02
组分 | 各因子载荷 | 组分 | 各因子载荷 | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | ||
Al2O3 | 0.41 | -0.25 | 0.80 | Na2O | 0.27 | 0.35 | 0.73 |
Fe2O3 | 0.82 | 0.18 | 0.30 | Mo | 0.12 | 0.96 | -0.04 |
K2O | 0.23 | -0.41 | 0.83 | Ni | 0.51 | 0.84 | 0.10 |
MgO | 0.83 | 0.20 | 0.49 | Co | 0.35 | 0.92 | -0.08 |
TiO2 | 0.78 | 0.14 | 0.50 | Sr | -0.88 | -0.17 | -0.32 |
CaO | -0.92 | -0.03 | -0.24 | 黏土 | 0.91 | 0.31 | 0.20 |
P2O5 | 0.07 | 0.95 | -0.05 | 粉砂 | 0.80 | 0.26 | -0.02 |
MnO | 0.24 | 0.96 | -0.02 | 砂 | -0.91 | -0.31 | -0.14 |
组分 | 各粒级组分载荷 | |||
---|---|---|---|---|
Mz | 黏土 | 粉砂 | 砂 | |
CaO* | 0.268 | 0.256 | 0.138 | 0.231 |
表6 CaO*与各粒级组分的相关性
Table 6 Correlation coefficients between CaO* (i.e., CaO in silicate minerals only) and particle size classes
组分 | 各粒级组分载荷 | |||
---|---|---|---|---|
Mz | 黏土 | 粉砂 | 砂 | |
CaO* | 0.268 | 0.256 | 0.138 | 0.231 |
图6 气候变化阶段与可能机制示意图 a,b,c,d分别是A11-02孔的CIA、Na/K、<22.1 μm粒级组分含量、>63 μm粒级组分含量的变化;e是西南极冰芯WDC06A-7的δ18O记录[56];f是72°S年平均和夏季(十二月)日照强度曲线[57]。
Fig.6 Temporal profiles of climate proxies corresponding to potential climate mechanisms. (a) CIA. (b) Na/K. (c) Grain content (< 22.1 μm). (d) Grain content (> 63 μm). (e) δ18O in West Antarctic ice core WDC06A-7 (adapted from [56]). (f) Mean annual and summer (December) insolation at 72°S (adapted from [57]).
[1] | YONGBIN L, RUJIAN W, LI W U, et al. Glacial dynamics evolutions revealed by Ice-Rafted Detritus record from the Ross Sea sector of the Southern Ocean since late Pleistocene[J]. Quaternary Sciences, 2021, 41(3): 662-677. |
[2] | BAMBER J L, RIVA R E M, VERMEERSEN B L A, et al. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet[J]. Science, 2009, 324(5929): 901-903. |
[3] | WANG J, TANG Z, CHANG F, et al. The ocean-driven instability of the south Pacific sector of the West Antarctic Ice Sheet since 773 ka[EB/OL]. (2021-05-21)[2021-09-04]. https://doi.org/10.1002/essoar.10507098.1. |
[4] | GOHL K, UENZELMANN-NEBEN G, GILLE-PETZOLDT J, et al. Evidence for a highly dynamic West Antarctic Ice Sheet during the Pliocene[J]. Geophysical Research Letters, 2021, 48(14). |
[5] | LARTER R D, ANDERSON J B, GRAHAM A G C, et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100: 55-86. |
[6] | LI T, DAWSON G, CHUTER S, et al. A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry[J]. Earth System Science Data Discussions, 2022: 14(2). https://doi.org/10.5194/essd-14-535-2022. |
[7] | GAO M, KIM S J, YANG J, et al. Historical fidelity and future change of Amundsen Sea low under 1. 5 ℃-4 ℃ global warming in cmip6[J]. Atmospheric Research, 2021, 255: 105533. |
[8] | MAZUR A K, WÅHLIN A K, SWART S. Seasonal changes of iceberg distribution and surface area in the Amundsen Sea embayment[EB/OL]. (2021-04-06)[2021-09-01]. https://doi.org/10.31223/X5VS4M. |
[9] | SIMOES PEREIRA P. Insights into West Antarctica’s geology and late Pleistocene ice sheet behaviour from isotopic sedimentary provenance studies[D]. London: Imperial College, 2018. |
[10] | STUIVER M, REIMER P J. Extended 14C data base and revised Calib 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. |
[11] | HILLENBRAND C D, SMITH J A, KUHN G, et al. Age assignment of a diatomaceous ooze deposited in the western Amundsen Sea embayment after the Last Glacial Maximum[J]. Journal of Quaternary Science, 2010, 25(3): 280-295. |
[12] | 中国国家标准化管理委员会. 海洋调查规范第8部分: 海洋地质地球物理调查:GB/T 12763.8—2007[S]. 北京: 中国标准出版社, 2007. |
[13] | KIM S Y, LIM D, REBOLLEDO L, et al. A 350-year multiproxy record of climate-driven environmental shifts in the Amundsen Sea polynya, Antarctica[J]. Global and Planetary Change, 2021, 205: 103589. |
[14] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[15] | 窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2): 147-157. |
[16] | HONDA M, SHIMIZU H. Geochemical, mineralogical and sedimentological studies on the Taklimakan desert sands[J]. Sedimentology, 1998, 45(6): 1125-1143. |
[17] | NESBITT H W, YOUNG G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[18] | 熊志方, 龚一鸣. 北戴河红色风化壳地球化学特征及气候环境意义[J]. 地学前缘, 2006, 13(6): 177-186. |
[19] | 蓝先洪, 李日辉, 密蓓蓓, 等. 渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别[J]. 地球科学, 2016, 41(3): 463-474. |
[20] | 盛晶瑾. 渤海湾西北部晚更新世以来沉积物稀土元素特征及物源意义[D]. 长春: 吉林大学, 2010. |
[21] | 石林, 解广轰. 南极罗斯岛及泰勒谷新生代火山岩微量元素特征及岩石成因[J]. 南极研究, 1995(3): 47-55. |
[22] | SETTI M, MARINONI L, LÓPEZ-GALINDO A. Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica[J]. Clay Minerals, 2004, 39(4): 405-421. |
[23] | 修淳, 陈新玺, 周勐佳, 等. 南极罗斯海R11柱样晚更新世晚期以来稀土元素地球化学特征[J]. 海洋地质前沿, 2017, 33(5): 1-8. |
[24] | 郑祥身, 刘嘉麒, 李锺益, 等. 西南极利文斯顿岛百耳斯半岛中生代火山岩地球化学特征[J]. 岩石学报, 1998(4): 98-114. |
[25] | 徐步台, 施光春. 南极半岛西部海域沉积物的氧同位素和稀土元素地球化学[J]. 科学通报, 1987(8): 606-609. |
[26] | 刘嘉麒, 张雯华, 郭正府. 南极南设得兰群岛中-新生代火山作用与地质环境[J]. 极地研究, 2002, 14(1): 1-11. |
[27] |
SOKOLOV S, RINTOUL S R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height[J]. Journal of Geophysical Research: Oceans, 2009, 114: C11019. DOI: 10.1029/2008JC005248.
DOI URL |
[28] | STAMMERJOHN S E, MAKSYM T, MASSOM R A, et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979-2014[J]. Elementa: Science of the Anthropocene, 2015, 3: 000055. https://doi.org/10.12952/journal.elementa.000055. |
[29] | 陈志华, 黄元辉, 唐正, 等. 南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 145-155. |
[30] | KIM C S, KIM T W, CHO K H, et al. Variability of the Antarctic Coastal Current in the Amundsen Sea[J]. Estuarine, Coastal and Shelf Science, 2016, 181: 123-133. |
[31] | GLADSTONE R M, BIGG G R, NICHOLLS K W. Iceberg trajectory modeling and meltwater injection in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2001, 106(C9): 19903-19915. |
[32] |
WALKER D P, BRANDON M A, JENKINS A, et al. Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough[J]. Geophysical Research Letters, 2007, 34: L02602. DOI: 10.1029/2006GL028154.
DOI URL |
[33] |
THOMA M, JENKINS A, HOLLAND D, et al. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica[J]. Geophysical Research Letters, 2008, 35: L18602. DOI: 10.1029/2008GL034939.
DOI URL |
[34] | JENKINS A, DUTRIEUX P, JACOBS S S, et al. Observations beneath Pine Island Glacier in west Antarctica and implications for its retreat[J]. Nature Geoscience, 2010, 3(7): 468-472. |
[35] | ARNEBORG L, WÅHLIN A K, BJÖRK G, et al. Persistent inflow of warm water onto the central Amundsen shelf: 12[J]. Nature Geoscience, 2012, 5(12): 876-880. |
[36] | RANDALL-GOODWIN E, MEREDITH M P, JENKINS A, et al. Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica freshwater distributions and water mass structure in the ASP region[J]. Elementa: Science of the Anthropocene, 2015, 3: 000065. https://doi.org/10.12952/journal.elementa.000065. |
[37] | KIM I, HAHM D, RHEE T S, et al. The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon[J]. Journal of Geophysical Research: Oceans, 2016, 121(3): 1654-1666. |
[38] | MILES T, LEE S H, WÅHLIN A, et al. Glider observations of the Dotson Ice Shelf outflow[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 123: 16-29. |
[39] | PEREIRA P S, VAN DE FLIERDT T, HEMMING S R, et al. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in late Holocene glacial-marine sediments[J]. Earth-Science Reviews, 2018, 182: 204-232. |
[40] | 杜德文, 石学法, 孟宪伟, 等. 黄海沉积物地球化学的粒度效应[J]. 海洋科学进展, 2003(1): 78-82. |
[41] | 郭峰, 杨作升, 刘振夏, 等. 末次盛冰期以来冲绳海槽中段岩心中黏土粒级沉积物地球化学特征及物质来源的阶段性[J]. 海洋学报, 2001, 23(3): 117-126. |
[42] | 李小洁, 梁莲姬. 南海北部沉积物常量元素变化、碳酸盐旋回及其古环境意义[J]. 第四纪研究, 2015, 35(2): 411-421. |
[43] | 张俊, 孟宪伟, 王湘芹. 晚第四纪南海北部陆坡沉积物常量元素比值对气候变冷事件的指示意义[J]. 海洋学报, 2013(4): 106-111. |
[44] | 陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7(2): 167-175. |
[45] | 李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174-1184. |
[46] | NESBITT H W, MARKOVICS G, PRICE R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochemical et Cosmochimica Acta, 1980, 44(11): 1659-1666. |
[47] | 王豪壮, 陈志华, 王春娟, 等. 普里兹湾陆架表层沉积物粒度特征及其环境指示意义[J]. 极地研究, 2015, 27(4): 421-428. |
[48] |
ASSMANN K M, HELLMER H H, JACOBS S S. Amundsen Sea ice production and transport[J]. Journal of Geophysical Research: Oceans, 2005, 110: C12013. DOI: 10.1029/2004JC002797.
DOI URL |
[49] | WÅHLIN A K, KALÉN O, ARNEBORG L, et al. Variability of Warm Deep Water inflow in a submarine trough on the Amundsen Sea shelf[J]. Journal of Physical Oceanography, 2013, 43(10): 2054-2070. |
[50] | WÅHLIN A K, KALEN O, ASSMANN K M, et al. Subinertial oscillations on the Amundsen Sea shelf, Antarctica[J]. Journal of Physical Oceanography, 2016, 46(9): 2573-2582. |
[51] | DUCKLOW H W, WILSON S E, POST A F, et al. Particle flux on the continental shelf in the Amundsen Sea polynya and Western Antarctic Peninsula Antarctic particle flux[J]. Elementa: Science of the Anthropocene, 2015, 3: 000046. https://doi.org/10.12952/journal.elementa.000046. |
[52] | KIM I, KIM G, CHOY E J. The significant inputs of trace elements and rare earth elements from melting glaciers in Antarctic coastal waters: 1[J]. Polar Research, 2015, 34(1): 24289. |
[53] | DIEKMANN B, KUHN G. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport[J]. Marine Geology, 1999, 158(1): 209-231. |
[54] | 张海龙, 肖晓彤. 北冰洋海冰重建方法研究进展[J]. 第四纪研究, 2021, 41(3): 813-823. |
[55] | DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[56] | MARCOTT S A, BAUSKA T K, BUIZERT C, et al. Centennial-scale changes in the global carbon cycle during the Last Deglaciation[J]. Nature, 2014, 514(7524): 616-619. |
[57] | LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[58] | MASSON V, VIMEUX F, JOUZEL J, et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records[J]. Quaternary Research, 2000, 54(3): 348-358. |
[59] | MILLIKEN K T, ANDERSON J B, WELLNER J S, et al. High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica[J]. GSA Bulletin, 2009, 121(11/12): 1711-1725. |
[60] | KAPLAN M R, STRELIN J A, SCHAEFER J M, et al. Holocene glacier behavior around the northern Antarctic Peninsula and possible causes[J]. Earth and Planetary Science Letters, 2020, 534: 116077. |
[61] | JONES V J, HODGSON D A, CHEPSTOW-LUSTY A. Paleolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica[J]. The Holocene, 2000, 10(1): 43-60. |
[62] | JACOBS S S, JENKINS A, GIULIVI C F, et al. Stronger ocean circulation and increased melting under Pine Island glacier ice shelf[J]. Nature Geoscience, 2011, 4(8): 519-523. |
[63] |
SHEPHERD A, WINGHAM D, RIGNOT E. Warm ocean is eroding West Antarctic Ice Sheet[J]. Geophysical Research Letters, 2004, 31: L23402. DOI: 10.1029/2004GL021106.
DOI URL |
[64] | SHEVENELL A E, KENNETT J P. Antarctic Holocene climate change: a benthic foraminiferal stable isotope record from palmer deep: Antarctic Holocene climate change[J]. Paleoceanography, 2002, 17(2): PAL 9-1-PAL 9-12. |
[65] | BARNARD A, WELLNER J S, ANDERSON J B. Late Holocene climate change recorded in proxy records from a Bransfield Basin sediment core, Antarctic peninsula[J]. Polar Research, 2014, 33(1): 17236. |
[66] | BENTLEY M J, HODGSON D A, SMITH J A, et al. Mechanisms of Holocene paleoenvironmental change in the Antarctic Peninsula region[J]. The Holocene, 2009, 19(1): 51-69. |
[67] | BERTLER N A N, MAYEWSKI P A, CARTER L. Cold conditions in Antarctica during the Little Ice Age: implications for abrupt climate change mechanisms[J]. Earth and Planetary Science Letters, 2011, 308(1): 41-51. |
[1] | 张梦薇, 高亮, 赵越, 裴军令, 杨振宇, 郭晓倩, 胡新炜. 德雷克海峡打开与构造—古海洋—古气候演变[J]. 地学前缘, 2024, 31(6): 415-435. |
[2] | 万成舟, 季晓慧, 杨眉, 何明跃, 张招崇, 曾姗, 王玉柱. 基于渐进多粒度训练深度学习的矿物图像识别[J]. 地学前缘, 2024, 31(4): 112-118. |
[3] | 张七道, 李德宗, 李致伟, 王东晖, 于一帆, 朱星强, 蔡泉宇, 李明. 黔西北普底地区富锂黏土岩地球化学特征及成因[J]. 地学前缘, 2024, 31(4): 258-280. |
[4] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[5] | 王成善, 高远, 王璞珺, 吴怀春, 吕庆田, 朱永宜, 万晓樵, 邹长春, 黄永建, 高有峰, 席党鹏, 王稳石, 贺怀宇, 冯子辉, 杨光, 邓成龙, 张来明, 王天天, 胡滨, 崔立伟, 彭诚, 余恩晓, 黄何, 杨柳, 毋正轩. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430. |
[6] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[7] | 官玉龙, 陈亮, 姜兆霞, 李三忠, 肖春凤, 陈龙. 东北印度洋源汇过程及古环境与古季风演化[J]. 地学前缘, 2022, 29(5): 102-118. |
[8] | 刘永岗, 张铭, 林琪凡, 刘鹏, 胡永云. 古气候中的沙尘变化及其气候影响[J]. 地学前缘, 2022, 29(5): 285-299. |
[9] | 孙炜毅, 刘健, 严蜜, 宁亮. 全新世亚洲季风百年-千年尺度变化的模拟研究进展[J]. 地学前缘, 2022, 29(5): 342-354. |
[10] | 冯铄, 刘志飞, Penjai SOMPONGCHAIYAKUL, 林宝治, Martin G. WIESNER. 泰国湾表层沉积物陆源碎屑的粒度特征及其展现的沉积动力环境[J]. 地学前缘, 2022, 29(4): 211-220. |
[11] | 由文智, 向芳, 黄恒旭, 杨坤美, 喻显涛, 丁力, 杨奇. 青藏高原东缘宜宾地区第四纪河流沉积物中铁质重矿物特征及物源意义[J]. 地学前缘, 2022, 29(4): 278-292. |
[12] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[13] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[14] | 颜茂都, 张大文, 李明慧. 思茅和呵叻盆地钾盐矿研究新进展和新认识[J]. 地学前缘, 2021, 28(6): 10-28. |
[15] | 邵春景, 胡欢, 尹宏伟, 苗忠英, 张雪飞, 李伟强, 夏芝广. 思茅盆地石盐矿物的原位元素含量特征对成矿模式的启示[J]. 地学前缘, 2021, 28(6): 66-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||