地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 285-299.DOI: 10.13745/j.esf.sf.2021.9.51
收稿日期:
2021-06-22
修回日期:
2021-07-30
出版日期:
2022-09-25
发布日期:
2022-08-24
作者简介:
刘永岗(1979—),男,博士,副教授,主要从事古气候模拟和物理海洋学方面的研究工作。E-mail: ygliu@pku.edu.cn
基金资助:
LIU Yonggang1(), ZHANG Ming1, LIN Qifan1, LIU Peng2, HU Yongyun1
Received:
2021-06-22
Revised:
2021-07-30
Online:
2022-09-25
Published:
2022-08-24
摘要:
大气中的沙尘通过对太阳光的吸收和散射对地表温度产生影响,进而对大气环流和降水等也产生影响,但是在地球的不同历史时期尤其是深时地球大气中的沙尘量如何变化以及如何影响气候还有很多不清楚的地方。本文通过模式模拟对地球上4个不同时期的沙尘变化及其气候影响进行了研究,这4个时期分别是陆地植被还没有出现的前寒武时期、有植被且全球气温较高的盘古超大陆时期、大陆分布接近现代但气候较寒冷的末次盛冰期和气候较温暖的中全新世。在前寒武时期,由于陆地起沙面积大,大气中的沙尘含量可以达到现代地球的近10倍,使得全球地表温度下降也有近10 ℃。在盘古超大陆时期,由于在副热带的陆地面积比现代稍大,因此大气沙尘量也比现代稍大,对全球平均温度的影响很小。在末次盛冰期,由于寒冷干燥,沙尘量是现代的约两倍,但是它对全球有强烈的增温作用,如果没有沙尘,全球温度可能降低约2.5 ℃。在中全新世,观测显示全球沙尘量比现代少很多,模拟显示,采用现代沙尘和把沙尘全部去掉对全球平均温度的影响可以忽略,但是大西洋经向翻转流有显著变化。
中图分类号:
刘永岗, 张铭, 林琪凡, 刘鹏, 胡永云. 古气候中的沙尘变化及其气候影响[J]. 地学前缘, 2022, 29(5): 285-299.
LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods[J]. Earth Science Frontiers, 2022, 29(5): 285-299.
图1 模拟得到的工业革命前(1850年)大气沙尘的年平均分布 a—真实植被和地表侵蚀系数;b—真实植被和全球均一的侵蚀系数;c—模拟的植被和全球均一的侵蚀系数。
Fig.1 Annual mean atmospheric dust loading during the pre-industrial obtained from model simulations
时期 | 轨道参数 对应年份 | CO2含量/ 10-6 | 太阳常数/ (W·m-2) | 海陆分布 | 沙尘设置 | 地表侵蚀系数k |
---|---|---|---|---|---|---|
中全新世 | 6 ka | 280 | 1 361 | 现代 | 固定为现代观测值 | |
6 ka | 280 | 1 361 | 现代 | 全球无沙尘 | ||
末次盛冰期 | 21 ka | 185 | 1 361 | ICE-6G | 在线模拟 | 同现代 |
21 ka | 185 | 1 361 | ICE-6G | 全球无沙尘 | 全球设为0 | |
盘古超大陆时期 | 1990 | 7 000 | 1 334 | 据[48] | 在线模拟 | 全球均一(0.013) |
1990 | 7 000 | 1 334 | 据[48] | 全球无沙尘 | 全球设为0 | |
前寒武纪 | 1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.30) |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.15) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.075) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.037 5) | |
1990 | 2 000 | 1 285 | 据[49] | 全球无沙尘 | 全球设为0 |
表1 各试验中的边界条件和地表侵蚀系数
Table 1 Boundary conditions and soil erodibility factors for all experiments
时期 | 轨道参数 对应年份 | CO2含量/ 10-6 | 太阳常数/ (W·m-2) | 海陆分布 | 沙尘设置 | 地表侵蚀系数k |
---|---|---|---|---|---|---|
中全新世 | 6 ka | 280 | 1 361 | 现代 | 固定为现代观测值 | |
6 ka | 280 | 1 361 | 现代 | 全球无沙尘 | ||
末次盛冰期 | 21 ka | 185 | 1 361 | ICE-6G | 在线模拟 | 同现代 |
21 ka | 185 | 1 361 | ICE-6G | 全球无沙尘 | 全球设为0 | |
盘古超大陆时期 | 1990 | 7 000 | 1 334 | 据[48] | 在线模拟 | 全球均一(0.013) |
1990 | 7 000 | 1 334 | 据[48] | 全球无沙尘 | 全球设为0 | |
前寒武纪 | 1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.30) |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.15) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.075) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.037 5) | |
1990 | 2 000 | 1 285 | 据[49] | 全球无沙尘 | 全球设为0 |
图8 盘古超大陆时期有沙尘时年平均和4个季节的温度变化
Fig.8 Changes of annual mean and seasonal mean surface temperature when considering dust during the Pangea supercontinent era
图9 盘古超大陆时期有沙尘时年平均和4个季节的降水变化
Fig.9 Changes of annual mean and seasonal mean precipitation rates when considering dust during the Pangea supercontinent era
[1] |
TEGEN I, LACIS A A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D14): 19237-19244.
DOI URL |
[2] |
GINOUX P, CHIN M, TEGEN I, et al. Sources and distributions of dust aerosols simulated with the GOCART model[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D17): 20255-20273.
DOI URL |
[3] |
SOKOLIK I N, TOON O B. Direct radiative forcing by anthropogenic airborne mineral aerosols[J]. Nature, 1996, 381(6584): 681-683.
DOI URL |
[4] | HUANG J P, WANG T H, WANG W C, et al. Climate effects of dust aerosols over East Asian arid and semiarid regions[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11398-11416. |
[5] |
SASSEN K, DEMOTT P J, PROSPERO J M, et al. Saharan dust storms and indirect aerosol effects on clouds: crystal-FACE results[J]. Geophysical Research Letters, 2003, 30(12). DOI: 10.1029/2003GL017371.
DOI |
[6] |
VINOJ V, RASCH P J, WANG H L, et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust[J]. Nature Geoscience, 2014, 7(4): 308-313.
DOI URL |
[7] | JIN Q, WEI J, YANG Z L, et al. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations[J]. Atmospheric Chemistry and Physics, 2015, 15(17): 9897-9915. |
[8] |
JIN Q J, YANG Z L, WEI J F. Seasonal responses of indian summer monsoon to dust aerosols in the middle east, India, and China[J]. Journal of Climate, 2016, 29(17): 6329-6349.
DOI URL |
[9] |
LI Z Q, LAU W K M, RAMANATHAN V, et al. Aerosol and monsoon climate interactions over Asia[J]. Reviews of Geophysics, 2016, 54(4): 866-929.
DOI URL |
[10] |
WU G X, LI Z Q, FU C B, et al. Advances in studying interactions between aerosols and monsoon in China[J]. Science China Earth Sciences, 2016, 59(1): 1-16.
DOI URL |
[11] |
SERRA N, MARTÍNEZ AVELLANEDA N, STAMMER D. Large-scale impact of Saharan dust on the North Atlantic Ocean circulation[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 704-730.
DOI URL |
[12] | ZHANG M, LIU Y, ZHANG J, et al. AMOC and climate responses to dust reduction and greening of Sahara during the Mid-Holocene[J]. Journal of Climate, 2021, 34(12): 4893-4912. |
[13] |
YUAN T L, OREOPOULOS L, ZELINKA M, et al. Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2016, 43(3): 1349-1356.
DOI URL |
[14] |
PAUSATA F S R, ZHANG Q, MUSCHITIELLO F, et al. Greening of the Sahara suppressed ENSO activity during the mid-Holocene[J]. Nature Communications, 2017, 8: 16020.
DOI URL |
[15] | PAUSATA F S R, EMANUEL K A, CHIACCHIO M, et al. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6221-6226. |
[16] |
WARREN S G, WISCOMBE W J. A model for the spectral albedo of snow. II: snow containing atmospheric aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2734-2745.
DOI URL |
[17] |
SARANGI C, QIAN Y, RITTGER K, et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia[J]. Nature Climate Change, 2020, 10(11): 1045-1051.
DOI URL |
[18] |
LAMBERT F, DELMONTE B, PETIT J R, et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core[J]. Nature, 2008, 452(7187): 616-619.
DOI URL |
[19] |
ABBOT D S, HALEVY I. Dust aerosol important for snowball earth deglaciation[J]. Journal of Climate, 2010, 23(15): 4121-4132.
DOI URL |
[20] | ABBOT D S, PIERREHUMBERT R T. Mudball: surface dust and snowball earth deglaciation[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D3): D03104. |
[21] | SHAFFER G, LAMBERT F. In and out of glacial extremes by way of dust-climate feedbacks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2026-2031. |
[22] |
YOON J E, YOO K C, MACDONALD A M, et al. Reviews and syntheses: ocean iron fertilization experiments-past, present, and future looking to a future korean iron fertilization experiment in the southern ocean (KIFES) project[J]. Biogeosciences, 2018, 15(19): 5847-5889.
DOI URL |
[23] |
BRACONNOT P, OTTO-BLIESNER B, HARRISON S, et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1: experiments and large-scale features[J]. Climate of the Past, 2007, 3(2): 261-277.
DOI URL |
[24] |
BRIERLEY C M, ZHAO A N, HARRISON S P, et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations[J]. Climate of the Past, 2020, 16(5): 1847-1872.
DOI URL |
[25] |
HOLMES J A. Ecology. How the Sahara became dry?[J]. Science, 2008, 320(5877): 752-753.
DOI URL |
[26] |
LÉZINE A M, HÉLY C, GRENIER C, et al. Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data[J]. Quaternary Science Reviews, 2011, 30(21/22): 3001-3012.
DOI URL |
[27] |
SHANAHAN T M, MCKAY N P, HUGHEN K A, et al. The time-transgressive termination of the African Humid Period[J]. Nature Geoscience, 2015, 8(2): 140-144.
DOI URL |
[28] |
CHEN Z H, WEN Q, YANG H J. Impact of Tibetan Plateau on North African precipitation[J]. Climate Dynamics, 2021, 57(9/10): 2767-2777.
DOI URL |
[29] |
BROCCOLI A J, MANABE S. The effects of orography on midlatitude northern hemisphere dry climates[J]. Journal of Climate, 1992, 5(11): 1181-1201.
DOI URL |
[30] |
LIU P, LIU Y G, PENG Y R, et al. Large influence of dust on the Precambrian climate[J]. Nature Communications, 2020, 11: 4427.
DOI URL |
[31] |
KOHFELD K E, HARRISON S P. DIRTMAP: the geological record of dust[J]. Earth-Science Reviews, 2001, 54(1/2/3): 81-114.
DOI URL |
[32] |
ROHLING E J, ROHLING E J, SLUIJS A, et al. Making sense of palaeoclimate sensitivity[J]. Nature, 2012, 491(7426): 683-691.
DOI URL |
[33] |
SHI Z G, LIU X D, AN Z S, et al. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change[J]. Climate Dynamics, 2011, 37(11/12): 2289-2301.
DOI URL |
[34] | HEAVENS N G, SHIELDS C A, MAHOWALD N M. A paleogeographic approach to aerosol prescription in simulations of deep time climate[J]. Journal of Advances in Modeling Earth Systems, 2012, 4(4): M11002. |
[35] |
SOREGHAN G S, HEAVENS N G, HINNOV L A, et al. Reconstructing the dust cycle in deep time: the case of the late Paleozoic icehouse[J]. The Paleontological Society Papers, 2015, 21: 83-120.
DOI URL |
[36] |
NEALE R B, RICHTER J, PARK S, et al. The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments[J]. Journal of Climate, 2013, 26(14): 5150-5168.
DOI URL |
[37] |
RICHTER J H, RASCH P J. Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3[J]. Journal of Climate, 2008, 21(7): 1487-1499.
DOI URL |
[38] | NEALE R B, RICHTER J H, CONLEY A J, et al. Description of the NCAR community atmosphere model (CAM 4.0)[R]. Boulder: National Center for Atmospheric Research, 2010. |
[39] | MAHOWALD N M, MUHS D R, LEVIS S, et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10): D10202. |
[40] | LAWRENCE D M, OLESON K W, FLANNER M G, et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 2011, 3(1): M03001. |
[41] | SMITH R, JONES P, BRIEGLEB B, et al. The Parallel Ocean Program (POP) reference manual: ocean component of the Community Climate System Model (CCSM)[R]. Boulder: National Center for Atmospheric Research, 2010. |
[42] | BRIEGLEB B P, DANABASOGLU G, LARGE W G. An overflow parameterization for the ocean component of the Community Climate System Model[R]. Boulder: National Center for Atmospheric Research, 2010. |
[43] |
DANABASOGLU G, BATES S C, BRIEGLEB B P, et al. The CCSM4 ocean component[J]. Journal of Climate, 2012, 25(5): 1361-1389.
DOI URL |
[44] | HUNKE E C, LIPSCOMB W H. CICE: the Los Alamos Sea Ice Model documentation and software user's manual version 4.1. LA-CC-06-012[R]. Los Alamos: Los Alamos National Laboratory, 2010. |
[45] |
ZENDER C S. Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphic, and hydrologic hypotheses[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D17): 4543.
DOI URL |
[46] |
DEMENOCAL P, ORTIZ J, GUILDERSON T, et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 347-361.
DOI URL |
[47] |
MCGEE D, DEMENOCAL P B, WINCKLER G, et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr[J]. Earth and Planetary Science Letters, 2013, 371/372: 163-176.
DOI URL |
[48] | SCOTESE C R, WRIGHT N M. PaleoMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic[EB/OL]. [2019-04-01]. https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright2018_PALEOMAP_PaleoDEMs.pdf. |
[49] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
DOI URL |
[50] |
ZHU J, LIU Z Y, BRADY E, et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model[J]. Geophysical Research Letters, 2017, 44(13): 6984-6992.
DOI URL |
[51] |
PAUSATA F S R, MESSORI G, ZHANG Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period[J]. Earth and Planetary Science Letters, 2016, 434: 298-307.
DOI URL |
[52] |
ALBANI S, MAHOWALD N M. Paleodust insights into dust impacts on climate[J]. Journal of Climate, 2019, 32(22): 7897-7913.
DOI URL |
[53] |
SCHNEIDER T, BISCHOFF T, HAUG G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513 (7516): 45-53.
DOI URL |
[54] |
ALBANI S, MAHOWALD N M, PERRY A T, et al. Improved dust representation in the community atmosphere model[J]. Journal of Advances in Modeling Earth Systems, 2014, 6(3): 541-570.
DOI URL |
[55] | MORRIS J L, PUTTICK M N, CLARK J W, et al. The timescale of early land plant evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): E2274-E2283. |
[56] |
HOFFMAN P F, KAUFMAN A J, HALVERSON G P, et al. A neoproterozoic snowball earth[J]. Science, 1998, 281 (5381): 1342-1346.
DOI URL |
[57] |
ZHANG X X, LIU H L, ZHANG M. Double ITCZ in coupled ocean-atmosphere models: from CMIP3 to CMIP5[J]. Geophysical Research Letters, 2015, 42(20): 8651-8659.
DOI URL |
[58] |
JIANG D B, HU D, TIAN Z P, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the east Asian monsoon[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1102-1118.
DOI URL |
[1] | 张梦薇, 高亮, 赵越, 裴军令, 杨振宇, 郭晓倩, 胡新炜. 德雷克海峡打开与构造—古海洋—古气候演变[J]. 地学前缘, 2024, 31(6): 415-435. |
[2] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[3] | 何辉, 穆文平, 张晓, 宋煜冰, 吕远洋, 武雄, 叶宝莹, 白中科. 锡林郭勒盟大型露天煤矿区地质环境时空演化评价[J]. 地学前缘, 2024, 31(3): 443-457. |
[4] | 王成善, 高远, 王璞珺, 吴怀春, 吕庆田, 朱永宜, 万晓樵, 邹长春, 黄永建, 高有峰, 席党鹏, 王稳石, 贺怀宇, 冯子辉, 杨光, 邓成龙, 张来明, 王天天, 胡滨, 崔立伟, 彭诚, 余恩晓, 黄何, 杨柳, 毋正轩. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430. |
[5] | 宋颜, 董少春, 胡欢, 王汝成. 基于大数据的铌钽矿物全球时空分布特征分析[J]. 地学前缘, 2023, 30(5): 197-204. |
[6] | 陈康, 丁永康, 张笑晨. 基于地理探测器的滏阳河流域植被覆盖时空变化与驱动力分析[J]. 地学前缘, 2023, 30(5): 526-540. |
[7] | 于奭, 蒲俊兵, 刘凡, 杨慧. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4): 418-428. |
[8] | 孙炜毅, 刘健, 严蜜, 宁亮. 全新世亚洲季风百年-千年尺度变化的模拟研究进展[J]. 地学前缘, 2022, 29(5): 342-354. |
[9] | 雷子炎, 葛倩, 陈东, 张泳聪, 韩喜彬, 叶黎明, 边叶萍, 许冬. 中全新世以来西南极阿蒙森海沉积物来源和古气候意义[J]. 地学前缘, 2022, 29(4): 179-190. |
[10] | 朱亮, 刘景涛, 张玉玺, 刘丹丹, 角世哲. 基于水循环分析的水资源乘数效应评价:以黄河上游北川河流域为例[J]. 地学前缘, 2022, 29(3): 263-270. |
[11] | 颜茂都, 张大文, 李明慧. 思茅和呵叻盆地钾盐矿研究新进展和新认识[J]. 地学前缘, 2021, 28(6): 10-28. |
[12] | 王军, 张骁, 高岩. 青藏高原植被动态与环境因子相互关系的研究现状与展望[J]. 地学前缘, 2021, 28(4): 70-82. |
[13] | 袁涛, 倪璇, 周伟. 煤炭开发区植被扰动时空效应及影响范围界定:以宁东矿区为例[J]. 地学前缘, 2021, 28(4): 110-117. |
[14] | 张俊杰, 白中科, 杨博宇. 新疆荒漠露天矿区生态受损及砾幕层重构方法研究[J]. 地学前缘, 2021, 28(4): 142-152. |
[15] | 赵冰清, 白中科, 郭东罡, 曹银贵. 黄土区露天煤矿排土场人工林下植被发育动态[J]. 地学前缘, 2021, 28(4): 153-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||