地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 191-201.DOI: 10.13745/j.esf.sf.2022.1.4
贾永刚1,2,3(), 阮文凤1,3, 胡乃利1,3, 乔玥1,3, 李正辉1,3, 胡聪1,3,*(
)
收稿日期:
2021-09-23
修回日期:
2021-11-14
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
胡聪
作者简介:
贾永刚(1965—),男,教授,博士生导师,主要从事海洋工程地质与原位观测研究。E-mail: yonggang@ouc.edu.cn
基金资助:
JIA Yonggang1,2,3(), RUAN Wenfeng1,3, HU Naili1,3, QIAO Yue1,3, LI Zhenghui1,3, HU Cong1,3,*(
)
Received:
2021-09-23
Revised:
2021-11-14
Online:
2022-07-25
Published:
2022-07-28
Contact:
HU Cong
摘要:
现代暖期(Current Warm Period,CWP,1850—至今)以来全球气温升高,南海北部陆坡底层海水温度升高、海平面上升影响海底天然气水合物稳定性。为探究现代暖期气候变暖对南海北部陆坡水合物分解影响,本文模拟计算了东沙海域、神狐海域、西沙海域、琼东南海域水合物赋存水深最浅处水合物的饱和度在1 000年内变化情况,评估了受现代暖期气候变暖影响水合物赋存水深范围,讨论了水合物分解量及其对环境影响。结果发现:(1)受现代暖期气候变暖影响,东沙海域、西沙海域、琼东南海域水合物分解,神狐海域水合物不分解;当东沙海域、西沙海域、琼东南海域水深分别超过665、770、725 m,水合物不分解;(2)现代暖期自始以来,南海北部陆坡水合物分解量为9.36×107~3.83×108 m3,产生的甲烷量为1.54×1010~6.28×1010 m3;(3)受现代暖期气候变暖影响,南海北部陆坡每年水合物分解量为5.5×105~2.25×106 m3,产生的甲烷量为9.02×107~3.69×108 m3,这些甲烷中3.61×105~1.48×106 m3能够进入大气,对温室效应贡献度为每年我国人类生活的0.01%~0.06%;与此同时,1.77×107~7.23×107 m3甲烷可能会在海水中被氧化形成弱酸,加重南海北部陆坡海水酸化。
中图分类号:
贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201.
JIA Yonggang, RUAN Wenfeng, HU Naili, QIAO Yue, LI Zhenghui, HU Cong. Hydrate dissociation on the northern slope of the South China Sea: Potential effects from climate warming in the current warm period[J]. Earth Science Frontiers, 2022, 29(4): 191-201.
地区 | 水合物资源量/ m3 | 文献 |
---|---|---|
全球 | (1.8~2.1)×1016 | [ |
南海 | 8.27×1013 | [ |
南海北部 | 4.3×1013 | [ |
东海 | 2.41×1013 | [ |
表1 不同海域水合物资源量统计表
Table 1 Hydrate resources in different sea areas
地区 | 水合物资源量/ m3 | 文献 |
---|---|---|
全球 | (1.8~2.1)×1016 | [ |
南海 | 8.27×1013 | [ |
南海北部 | 4.3×1013 | [ |
东海 | 2.41×1013 | [ |
区域 | 水合物储层 分布水深/m | 水合物 饱和度 | 孔隙度 | 渗透率/ mD | 热导率/ (W·m-1·K-1) | 地温梯度/ (℃·100 m-1) | 水合物储量/ 108 m3 | 文献 |
---|---|---|---|---|---|---|---|---|
东沙海域 | 600~1 100 | 0.15~0.53 | 0.3~0.6 | — | 1.12~1.28 | 3.27~3.97 | 9.14 | [ |
神狐海域 | 900~1 500 | 0.2~0.7 | 0.33~0.55 | 0.2~20 | 0.65~1.31 | 5.18~8.42 | 1 500 | [ |
西沙海域 | 600~2 500 | — | 0.35~0.47 | 2~20 | 0.8~1.04 | 9.25~10.72 | 69 | [ |
琼东南海域 | 650~2 000 | — | 0.26~0.59 | — | 1.55~1.81 | 4~6.08 | 2 500 | [ |
表2 南海北部陆坡水合物储层基础物性表
Table 2 Physical properties of hydrate reservoirs on the northern slope of the South China Sea
区域 | 水合物储层 分布水深/m | 水合物 饱和度 | 孔隙度 | 渗透率/ mD | 热导率/ (W·m-1·K-1) | 地温梯度/ (℃·100 m-1) | 水合物储量/ 108 m3 | 文献 |
---|---|---|---|---|---|---|---|---|
东沙海域 | 600~1 100 | 0.15~0.53 | 0.3~0.6 | — | 1.12~1.28 | 3.27~3.97 | 9.14 | [ |
神狐海域 | 900~1 500 | 0.2~0.7 | 0.33~0.55 | 0.2~20 | 0.65~1.31 | 5.18~8.42 | 1 500 | [ |
西沙海域 | 600~2 500 | — | 0.35~0.47 | 2~20 | 0.8~1.04 | 9.25~10.72 | 69 | [ |
琼东南海域 | 650~2 000 | — | 0.26~0.59 | — | 1.55~1.81 | 4~6.08 | 2 500 | [ |
区域 | 水深/m | 现代暖期初期 底层水温度/℃ | 目前底层 水温度/℃ | 孔隙度 | 渗透率/ mD | 热导率/ (W·m-1·K-1) | 地温梯度/ (℃·100 m-1) |
---|---|---|---|---|---|---|---|
东沙海域 | 600 | 5.27 | 6.77 | 0.45 | 10.1 | 1.2 | 3.62 |
神狐海域 | 900 | 3.75 | 5.25 | 0.44 | 10.1 | 0.98 | 6.8 |
西沙海域 | 600 | 5.27 | 6.77 | 0.41 | 11 | 0.92 | 10 |
琼东南海域 | 650 | 4.94 | 6.44 | 0.43 | 11 | 1.68 | 5.04 |
表3 不同海域模拟计算参数表(水合物赋存水深最浅处)
Table 3 Simulation parameters for the different sea areas (at the minimum depth of the hydrate reservoirs)
区域 | 水深/m | 现代暖期初期 底层水温度/℃ | 目前底层 水温度/℃ | 孔隙度 | 渗透率/ mD | 热导率/ (W·m-1·K-1) | 地温梯度/ (℃·100 m-1) |
---|---|---|---|---|---|---|---|
东沙海域 | 600 | 5.27 | 6.77 | 0.45 | 10.1 | 1.2 | 3.62 |
神狐海域 | 900 | 3.75 | 5.25 | 0.44 | 10.1 | 0.98 | 6.8 |
西沙海域 | 600 | 5.27 | 6.77 | 0.41 | 11 | 0.92 | 10 |
琼东南海域 | 650 | 4.94 | 6.44 | 0.43 | 11 | 1.68 | 5.04 |
图1 各海域海底水合物饱和度剖面随时间变化图(受现代暖期气候变暖影响) A—东沙海域水深600 m;B—神狐海域水深900 m;C—西沙海域水深600 m;D—琼东南海域水深650 m(左—原图;右—细节图)。
Fig.1 Changes of hydration saturation profiles over time in different sea areas (under the influence of CWP climate warming)
图2 各海域海底地温曲线随时间变化图(受现代暖期气候变暖影响) A—东沙海域水深600 m;B—神狐海域水深900 m;C—西沙海域水深600 m;D—琼东南海域水深650 m。
Fig.2 Changes of bottom temperature profiles over time in different sea areas (under the influence of CWP climate warming)
图3 各海域海底水合物饱和度剖面随时间变化图(受现代暖期气候变暖影响) A—东沙海域水深665 m;B—神狐海域水深900 m;C—西沙海域水深770 m;D—琼东南海域水深725 m。
Fig.3 Changes of hydrate saturation profiles over time in different sea area (under the influence of CWP climate warming)
图4 南海北部陆坡天然气水合物储层分布图(受现代暖期气候变暖影响)(据文献[63]修改)
Fig.4 Distribution of hydrate reservoirs on the northern slope of the South China Sea (under the influence of CWP climate warming). Modified after [63].
[1] | SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-363. |
[2] | MAX M D. Natural gas hydrate: in oceanic and permafrost environments[M]. Dordrecht: Kluwer Academic Publishers, 2003. |
[3] | 何家雄, 钟灿鸣, 姚永坚, 等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 2020, 36(12): 1-14. |
[4] | 方银霞, 黎明碧, 金翔龙. 东海冲绳海槽天然气水合物的资源前景[J]. 天然气地球科学, 2001(6): 32-37. |
[5] | 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1-24. |
[6] | 杨顶辉, XU W Y. 盐度对甲烷气水合物系统的影响[J]. 中国科学D辑: 地球科学, 2007, 37(10): 1370-1381. |
[7] | HESTER K C, BREWER P G. Clathrate hydrates in nature[J]. Annual Review of Marine Science, 2009, 1(1): 303-327. |
[8] | DICKENS G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 169-183. |
[9] | 叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学: 中国地质大学学报, 2013, 38(6): 1299-1308. |
[10] | DICKENS G R, CASTILLO M M, WALKER J C G. A blast of gas in the latest Palaeocene: simulating first-order effects of massive dissociation of methane hydrate[J]. Geology, 1997, 25(3): 259-262. |
[11] | KATZ, MIRIAM E, PAK, et al. The source and fate of massive carbon input during the latest Paleocene thermal maximum[J]. Science, 1999, 286(5444): 1531-1533. |
[12] | BAINS S, CORFIELD R M, NORRIS R D, et al. Mechanisms of climate warming at the end of the Paleocene[J]. Science, 1999, 285(5428): 724-727. |
[13] | KENNETT J P, CANNARIATO K G, HENDY I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128-133. |
[14] | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
[15] | DARNELL K N, FLEMINGS P B. Transient seafloor venting on continental slopes from warming-induced methane hydrate dissociation[J]. Geophysical Research Letters, 2015, 42(24): 10765-10772. |
[16] | MARÍN MORENO H, MINSHULL T A, WESTBROOK G K, et al. The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries[J]. Geophysical Research Letters, 2013, 40(19): 5159-5163. |
[17] | MESTDAGH T, POORT J, DE BATIST M. The sensitivity of gas hydrate reservoirs to climate change: perspectives from a new combined model for permafrost-related and marine settings[J]. Earth-Science Reviews, 2017, 169: 104-131. |
[18] | CRÉMIÈRE A, LEPLAND A, CHAND S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J]. Nature Communications, 2016, 7(1): 11509. |
[19] | MILKOV A V, SASSEN R. Two-dimensional modeling of gas hydrate decomposition in the northwestern Gulf of Mexico: significance to global change assessment[J]. Global and Planetary Change, 2003, 36(1/2): 31-46. |
[20] | MIENERT J, ANDREASSEN K, POSEWANG J, et al. Changes of the hydrate stability zone of the Norwegian Margin from glacial to interglacial times[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 200-210. |
[21] | REAGAN M T, MORIDIS G J. Oceanic gas hydrate instability and dissociation under climate change scenarios[J]. Geophysical Research Letters, 2007, 34(22): 60-64. |
[22] | DENG W, LIU X, CHEN X, et al. A comparison of the climates of the Medieval Climate Anomaly, Little Ice Age, and Current Warm Period reconstructed using coral records from the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 264-275. |
[23] | 刘杰, 金光荣, 邬黛黛, 等. 末次冰期以来珠江口盆地深水区天然气水合物稳定带演化[J]. 新能源进展, 2020, 8(4): 272-281. |
[24] | 王淑红, 颜文, 宋海斌. 末次盛冰期以来西沙海槽天然气水合物储库变化及其对环境的影响[J]. 地球科学: 中国地质大学学报, 2008, 33(1): 74-82. |
[25] | 刘以宣, 詹文欢, 陈欣树, 等. 南海輓近海平面变化与构造升降初步研究[J]. 热带海洋, 1993, 12(3): 24-31. |
[26] | XU W, RUPPEL C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 5081-5095. |
[27] | LI J. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[28] | 秦志亮. 南海北部陆坡块体搬运体系的地震反射特征及演化[D]. 北京: 中国地质大学(北京), 2009. |
[29] | 吴能友, 张光学, 梁金强, 等. 南海北部陆坡天然气水合物研究进展[J]. 新能源进展, 2013, 1(1): 80-94. |
[30] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[31] | MCDONNELL S L, MAX M D, CHERKIS N Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17(8): 929-936. |
[32] | 沙志彬, 郭依群, 杨木壮, 等. 南海北部陆坡区沉积与天然气水合物成藏关系[J]. 海洋地质与第四纪地质. 2009, 29(5): 89-98. |
[33] | 龚跃华, 吴时国, 张光学, 等. 南海东沙海域天然气水合物与地质构造的关系[J]. 海洋地质与第四纪地质, 2008, 28(1): 99-104. |
[34] |
沙志彬, 梁金强, 苏丕波, 等. 珠江口盆地东部海域天然气水合物钻探结果及其成藏要素研究[J]. 地学前缘, 2015, 22(6): 125-135.
DOI |
[35] | LIU C, MENG Q, HE X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth Basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61(61): 14-21. |
[36] | ZHANG G, LIANG J, LU J, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. |
[37] | 何家雄, 颜文, 祝有海, 等. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏[J]. 天然气工业, 2013, 33(6): 121-134. |
[38] | 王力峰, 尚久靖, 梁金强, 等. 南海东北部陆坡水合物钻探区海底表层热导率分布特征[J]. 海洋地质与第四纪地质, 2016, 36(2): 29-37. |
[39] | 王玥霖. 南海东沙探区天然气水合物成藏条件和分布主控因素研究[D]. 北京: 中国石油大学(北京), 2016. |
[40] | 朱超祁, 贾永刚, 张民生, 等. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 2016, 24(5): 863-870. |
[41] | WANG X, LIU B, QIAN J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea[J]. Journal of Asian Earth Sciences, 2017, 168: 27-37. |
[42] | WEI J, LIANG J, LU J, et al. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea: results of the fifth gas hydrate drilling expedition[J]. Marine and Petroleum Geology, 2019, 110: 287-298. |
[43] | WEI J, FANG Y, LU H, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 622-628. |
[44] | WU N, ZHANG H, YANG S, et al. Gas hydrate system of Shenhu Area, Northern South China Sea: geochemical results[J]. Journal of Geological Research, 2011: 1-10. |
[45] | 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. |
[46] | 朱超祁, 周蕾, 张红, 等. 南海北陆架坡表面沉积物的物理力学性质初探[J]. 工程地质学报, 2017, 25(6): 1566-1573. |
[47] | 王宏语, 孙春岩, 张洪波, 等. 西沙海槽潜在天然气水合物成因及形成地质模式[J]. 海洋地质与第四纪地质, 2005, 25(4): 89-95. |
[48] | 孙春岩, 王宏语, 牛滨华, 等. 西沙海槽研究区天然气水合物地球化学勘探[J]. 地球科学: 中国地质大学学报, 2004, 29(2): 135-140. |
[49] | 王振峰, 孙志鹏, 张迎朝, 等. 南海北部琼东南盆地深水中央峡谷大气田分布与成藏规律[J]. 中国石油勘探, 2016, 21(4): 54-64. |
[50] | 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3): 483-489. |
[51] | WANG Z, SHI X, YANG J, et al. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2014, 33(12): 107-117. |
[52] | WAITE W F, STEM L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophysical Journal International, 2007, 169(2): 767-774. |
[53] | 李栋梁, 梁德青. 水合物导热系数和热扩散率实验研究[J]. 新能源进展, 2015, 3(6): 464-468. |
[54] | XU W, GERMANOVICH L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach[J]. Journal of Geophysical Research-Solid Earth, 2006, 111(B1): B1104. |
[55] | DAVIE M K, BUFFETT B A. A numerical model for the formation of gas hydrate below the seafloor[J]. Journal of Geophysical Research Solid Earth. 2001, 106(B1): 497-514. |
[56] | WEIZHI L, ANDREW T L, CHAR SHINE L, et al. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications[J]. Journal of Asian Earth Sciences, 2014, 92: 233-244. |
[57] | 栾锡武, 张亮, 岳保静. 南海北部陆坡海底火山活动对天然气水合物成藏的影响[J]. 现代地质, 2010, 24(3): 424-432. |
[58] | 刘杰, 刘丽华, 吴能友, 等. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2): 146-155. |
[59] |
王艳忠, 操应长, 葸克来, 等. 碎屑岩储层地质历史时期孔隙度演化恢复方法: 以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报, 2013, 34(6): 1100-1111.
DOI |
[60] | 梁永兴, 曾溅辉, 郭依群, 等. 神狐钻探区天然气水合物成藏地质条件分析[J]. 现代地质, 2013, 27(2): 425-434. |
[61] | 杨涛, 蒋少涌, 葛璐, 等. 南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 第四纪研究, 2006, 26(3): 442-448. |
[62] | KVENVOLDEN K A. Gas hydrates: geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187. |
[63] | 张丛, 鲍献文, 丁扬, 等. 南海北部陆架坡折带潮流和低频流特征分析[J]. 海洋与湖沼, 2017, 48(2): 221-231. |
[64] | 冯强强, 陶军, 陈宗恒, 等. 天然气水合物调查区微地貌特征探测成果[J]. 地球学报, 2019, 40(2): 314-318. |
[65] | 尚久靖, 吴庐山, 粱金强, 等. 南海东北部陆坡海底微地貌特征及其天然气渗透模式[J]. 海洋地质与第四纪地质, 2014, 34(1): 129-136. |
[66] | 李守军, 初凤友, 方银霞, 等. 南海北部陆坡神狐海域浅地层与单道地震剖面联合解释: 水合物区沉积地层特征[J]. 热带海洋学报, 2010, 29(4): 56-62. |
[67] | 王秀娟, 吴时国, 董冬冬, 等. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用[J]. 海洋地质与第四纪地质, 2011, 31(1): 109-118. |
[68] | 邬黛黛, 吴能友, 叶瑛, 等. 南海北部陆坡九龙甲烷礁冷泉碳酸盐岩沉积岩石学特征[J]. 热带海洋学报, 2009, 28(3): 74-81. |
[69] | HAN X, SUESS E, HUANG Y, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3/4): 243-256. |
[70] | 张汉泉, 吴庐山, 张锦炜. 海底可视技术在天然气水合物勘查中的应用[J]. 地质通报, 2005, 24(2): 185-188. |
[71] | 黄怡, 王淑红, 颜文, 等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报, 2018, 37(4): 61-69. |
[72] |
陈忠, 颜文, 陈木宏, 等. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4): 394-400.
DOI |
[73] | MIENERT J, POSEWANG J, BAUMANN M. Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margin instabilities and possible release of methane[J]. Geological Society London Special Publications, 1998, 137(1): 275-291. |
[74] | REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. |
[75] | 刘钊. 煤矿乏风逆流式催化氧化蓄热装置试验研究[D]. 大连: 大连理工大学, 2012. |
[76] | 孙洁晶. 南京市低碳城市建设研究[D]. 大连: 大连海事大学, 2019. |
[1] | 沈禄银, 潘仁芳, 吕海涛, 段太忠, 贺婷婷, 刘义生, 赵磊. 基于沉积模拟的总可容空间定量分析[J]. 地学前缘, 2024, 31(2): 391-401. |
[2] | 沈禄银, 潘仁芳, 段太忠, 刘彦锋, 李蒙, 廉培庆, 黄渊, 张德民. 基于地层沉积反演的深时海平面变化曲线恢复方法[J]. 地学前缘, 2023, 30(2): 109-121. |
[3] | 季春生, 贾永刚, 朱俊江, 胡乃利, 范智涵, 胡聪, 冯学志, 余和雨, 刘博. 深海海底边界层原位观测系统研发与应用[J]. 地学前缘, 2022, 29(5): 265-274. |
[4] | 邹建军, 宗娴, 朱爱美, 豆汝席, 林锦辉, 冯旭光, 董智, Sergey A. GORBARENKO, 郑立伟, 石学法. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123-135. |
[5] | 胡钊彬, 尉建功, 谢志远, 张伙带, 钟广法. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24. |
[6] | 席党鹏, 唐自华, 王雪娇, 覃祚焕, 曹文心, 江湉, 吴宝旭, 栗源浩, 张赢月, 姜文彬, KAMRAN Muhammad, 方小敏, 万晓樵. 塔里木盆地西部白垩纪—古近纪海相地层框架及对重大地质事件的记录[J]. 地学前缘, 2020, 27(6): 165-198. |
[7] | 张振,程日辉,许中杰,李双林. 下扬子区上石炭统船山组碳酸盐台地层序与相对海平面变化控制:以句容剖面为例[J]. 地学前缘, 2018, 25(2): 232-245. |
[8] | 张光学,陈芳,沙志彬,梁金强,苏新,陆红锋. 南海东北部天然气水合物成藏演化地质过程[J]. 地学前缘, 2017, 24(4): 15-23. |
[9] | 武思琴,颜佳新,刘柯,严雅娟. 黔西南二叠纪早期陆源碎屑沉积体系对冈瓦纳冰川发育的响应[J]. 地学前缘, 2016, 23(6): 299-311. |
[10] | 朱东亚, 金之钧, 张荣强, 张殿伟, 何治亮, 李双建. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘, 2014, 21(6): 335-345. |
[11] | 李铁刚, 常凤鸣, 于心科. Younger Dryas事件与北黄海泥炭层的形成[J]. 地学前缘, 2010, 17(1): 322-330. |
[12] | 余克服 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6): 138-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||