地学前缘 ›› 2022, Vol. 29 ›› Issue (3): 99-114.DOI: 10.13745/j.esf.sf.2022.1.33
孙英1,2,3(), 周金龙1,2,3,*(
), 杨方源4, 纪媛媛1,2,3,5, 曾妍妍1,2,3
收稿日期:
2021-12-01
修回日期:
2022-01-14
出版日期:
2022-05-25
发布日期:
2022-04-28
通信作者:
周金龙
作者简介:
孙 英(1994—),女,博士研究生,主要从事地下水资源评价与水质演化方面的研究工作。E-mail: 879986831@qq.com
基金资助:
SUN Ying1,2,3(), ZHOU Jinlong1,2,3,*(
), YANG Fangyuan4, JI Yuanyuan1,2,3,5, ZENG Yanyan1,2,3
Received:
2021-12-01
Revised:
2022-01-14
Online:
2022-05-25
Published:
2022-04-28
Contact:
ZHOU Jinlong
摘要:
由于地表水资源稀缺,地下水是塔里木盆地南缘绿洲带重要用水水源,因此,系统查明该区地下水砷氟碘的分布及成因至关重要。基于塔里木盆地南缘绿洲带233组地下水水样检测结果,分析不同含水层中高砷、高氟和高碘地下水的空间分布及水化学特征,结合研究区地质、水文地质条件和地下水赋存环境进一步揭示影响地下水砷氟碘的来源、迁移与富集的水文地球化学过程。结果表明:地下水砷、氟、碘浓度变化范围分别为1.091.2 μg/L、0.0128.31 mg/L、10.02 637.0 μg/L。地下水高砷、高氟和高碘水样分别占总水样的7.3%、47.2%和11.6%,砷氟碘共富集占比为3.0%。砷氟碘共富集地下水主要分布于研究区中部的民丰县,水化学类型主要为Cl·SO4-Na型。自补给区至过渡区再至蒸发区,地下水氟、碘浓度明显增大,砷浓度在过渡区和蒸发区均较大;砷氟碘共富集地下水取样点主要分布于36.060.0 m深度的浅层承压含水层中。浅层地下水受蒸发作用和矿物溶解沉淀作用的影响,随砷氟碘富集项的增多而增大。第四纪成因类型中风积物对氟浓度的影响较大,洪积-湖积物对砷和碘浓度的影响较大。细粒岩性、平缓的地形、地下水浅埋条件、偏碱性的地下水环境、微生物降解作用下有机质介导的矿物溶解是利于砷氟碘共富集的主要机制。
中图分类号:
孙英, 周金龙, 杨方源, 纪媛媛, 曾妍妍. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.
区域 | 含水层类型 (井深,样品数) | ρB/(μg·L-1) | ρB/(mg·L-1) | Eh/mV | pH值 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | I | F- | K++Na+ | Ca2+ | Mg2+ | Cl- | | | TDS | TH | | Fe | Mn | |||||||
补给区 | 单一结构潜水 (70300 m, n=20) | 最大值 | 4.0 | 40.0 | 4.13 | 445.36 | 212.89 | 234.62 | 655.43 | 1 036.14 | 317.37 | 2 189.07 | 1 284.49 | 5.10 | 12.69 | 0.36 | 202.00 | 8.69 | ||
最小值 | <1.0 | <10.0 | 0.16 | 26.09 | 26.23 | 6.59 | 14.36 | 53.51 | 97.24 | 198.50 | 111.60 | 0.35 | <0.01 | <0.001 | 69.00 | 7.78 | ||||
均值 | 1.3 | 29.5 | 0.88 | 142.78 | 80.99 | 43.36 | 183.68 | 295.66 | 153.23 | 840.82 | 382.06 | 1.49 | 2.18 | 0.09 | 135.50 | 8.24 | ||||
过渡区 | 单一结构潜水 (15180 m, n=63) 浅层承压水 (2580 m, n=23) 深层承压水 (90130 m, n=11) | 最大值 | 91.2 | 734.0 | 28.31 | 14 160.41 | 385.20 | 760.45 | 14 348.64 | 9 889.67 | 3 954.03 | 41 282.73 | 3 381.10 | 42.15 | 20.52 | 4.11 | 255.00 | 9.51 | ||
最小值 | <1.0 | <10.0 | 0.24 | 28.35 | 20.06 | 6.30 | 25.13 | 19.00 | 36.62 | 209.40 | 119.60 | <0.2 | <0.01 | <0.001 | 18.00 | 6.86 | ||||
均值 | 3.9 | 48.1 | 2.05 | 688.87 | 108.28 | 81.35 | 773.62 | 688.12 | 377.72 | 2 565.35 | 597.96 | 3.60 | 1.09 | 0.13 | 156.85 | 7.96 | ||||
最大值 | 67.6 | 317.0 | 6.78 | 80 124.29 | 810.10 | 4 237.93 | 101 093.12 | 37 310.28 | 1 933.05 | 221 574.89 | 18 963.90 | 11.43 | 6.85 | 0.96 | 111.00 | 8.48 | ||||
最小值 | <1.0 | <10.0 | <0.01 | 74.82 | 21.72 | 24.90 | 90.83 | 124.30 | 69.89 | 388.90 | 156.60 | <0.2 | <0.01 | <0.001 | -46.00 | 6.58 | ||||
均值 | 6.2 | 82.3 | 1.38 | 15 106.05 | 302.82 | 979.98 | 19 187.87 | 8 517.93 | 331.10 | 44 292.45 | 4 790.63 | 3.42 | 1.47 | 0.14 | 39.15 | 7.74 | ||||
最大值 | 5.0 | 40.0 | 1.83 | 423.21 | 172.15 | 190.40 | 553.35 | 1 050.71 | 353.99 | 2 591.80 | 1 213.70 | 5.80 | 0.14 | <0.001 | 225.00 | 8.40 | ||||
最小值 | <1.0 | <10.0 | 0.66 | 121.50 | 25.98 | 3.66 | 91.54 | 177.19 | 121.60 | 522.57 | 108.60 | <0.2 | <0.01 | <0.001 | 106.00 | 7.77 | ||||
均值 | 1.3 | 34.5 | 1.03 | 198.46 | 105.02 | 77.20 | 270.15 | 449.94 | 227.52 | 1 240.66 | 580.02 | 2.60 | 0.04 | <0.001 | 165.50 | 8.12 | ||||
蒸发区 | 单一结构潜水 (7150 m, n=87) 承压水区潜水 (818 m, n=6) 浅层承压水 (2560 m, n=17) 深层承压水 (100110 m, n=6) | 最大值 | 43.0 | 473.0 | 23.23 | 9 625.30 | 702.10 | 1 307.97 | 13 462.92 | 8 913.20 | 1 288.00 | 34 431.90 | 6 549.30 | 25.17 | 33.50 | 6.55 | 253.00 | 10.50 | ||
最小值 | <1.0 | <10.0 | <0.01 | 63.22 | 12.03 | 9.57 | 67.31 | 97.79 | 51.66 | 396.39 | 81.06 | <0.2 | <0.01 | <0.001 | -59.00 | 7.07 | ||||
均值 | 3.1 | 46.4 | 2.15 | 748.30 | 139.58 | 158.16 | 970.73 | 883.09 | 408.82 | 3 132.58 | 999.27 | 2.41 | 1.34 | 0.25 | 142.24 | 7.87 | ||||
最大值 | 35.0 | 70.0 | 16.20 | 5 949.27 | 396.20 | 1 533.06 | 5 668.60 | 6 961.23 | 726.20 | 19 120.29 | 6 762.20 | 1.44 | 13.01 | 1.20 | 168.00 | 8.25 | ||||
最小值 | <1.0 | <10.0 | 0.89 | 832.50 | 79.04 | 175.21 | 1 062.86 | 1 320.13 | 390.61 | 4 578.02 | 1 272.30 | 0.47 | <0.01 | <0.001 | 168.00 | 7.29 | ||||
均值 | 6.7 | 45.0 | 6.38 | 2 245.91 | 232.07 | 574.12 | 2 537.99 | 3 699.41 | 538.23 | 9 587.07 | 2 943.13 | 0.92 | 3.30 | 0.26 | 168.00 | 7.79 | ||||
最大值 | 61.2 | 2 637.0 | 5.40 | 121 075.28 | 1 012.62 | 25 366.14 | 172 922.44 | 54 147.68 | 1 428.15 | 358 694.00 | 106 956.45 | 31.27 | 9.14 | 3.19 | 205.00 | 8.44 | ||||
最小值 | <1.0 | <10.0 | 0.07 | 74.76 | 34.10 | 27.50 | 99.20 | 132.18 | 85.45 | 519.31 | 198.40 | <0.2 | <0.01 | <0.001 | -80.00 | 6.30 | ||||
均值 | 5.8 | 316.6 | 1.17 | 32 599.35 | 327.02 | 3 154.15 | 43 522.74 | 16 078.90 | 309.51 | 95 869.72 | 13 801.64 | 3.70 | 3.10 | 0.47 | -12.90 | 7.58 | ||||
最大值 | <1.0 | 40.0 | 2.80 | 862.60 | 190.00 | 245.60 | 1 094.00 | 1 102.00 | 695.20 | 3 865.00 | 1 486.00 | 3.29 | 1.86 | 0.24 | 186.00 | 8.20 | ||||
最小值 | <1.0 | <10.0 | 1.02 | 222.58 | 51.75 | 34.31 | 311.77 | 211.02 | 106.30 | 959.69 | 270.50 | 0.49 | <0.01 | <0.001 | 53.00 | 7.80 | ||||
均值 | <1.0 | 18.3 | 1.92 | 373.87 | 113.74 | 97.43 | 511.06 | 485.55 | 267.54 | 1 737.95 | 685.23 | 1.28 | 0.45 | 0.06 | 97.25 | 7.98 |
表1 研究区地下水化学组分浓度统计表
Table 1 Statistics of hydrogeological properties and hydrochemical composition of groundwater in the study area
区域 | 含水层类型 (井深,样品数) | ρB/(μg·L-1) | ρB/(mg·L-1) | Eh/mV | pH值 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | I | F- | K++Na+ | Ca2+ | Mg2+ | Cl- | | | TDS | TH | | Fe | Mn | |||||||
补给区 | 单一结构潜水 (70300 m, n=20) | 最大值 | 4.0 | 40.0 | 4.13 | 445.36 | 212.89 | 234.62 | 655.43 | 1 036.14 | 317.37 | 2 189.07 | 1 284.49 | 5.10 | 12.69 | 0.36 | 202.00 | 8.69 | ||
最小值 | <1.0 | <10.0 | 0.16 | 26.09 | 26.23 | 6.59 | 14.36 | 53.51 | 97.24 | 198.50 | 111.60 | 0.35 | <0.01 | <0.001 | 69.00 | 7.78 | ||||
均值 | 1.3 | 29.5 | 0.88 | 142.78 | 80.99 | 43.36 | 183.68 | 295.66 | 153.23 | 840.82 | 382.06 | 1.49 | 2.18 | 0.09 | 135.50 | 8.24 | ||||
过渡区 | 单一结构潜水 (15180 m, n=63) 浅层承压水 (2580 m, n=23) 深层承压水 (90130 m, n=11) | 最大值 | 91.2 | 734.0 | 28.31 | 14 160.41 | 385.20 | 760.45 | 14 348.64 | 9 889.67 | 3 954.03 | 41 282.73 | 3 381.10 | 42.15 | 20.52 | 4.11 | 255.00 | 9.51 | ||
最小值 | <1.0 | <10.0 | 0.24 | 28.35 | 20.06 | 6.30 | 25.13 | 19.00 | 36.62 | 209.40 | 119.60 | <0.2 | <0.01 | <0.001 | 18.00 | 6.86 | ||||
均值 | 3.9 | 48.1 | 2.05 | 688.87 | 108.28 | 81.35 | 773.62 | 688.12 | 377.72 | 2 565.35 | 597.96 | 3.60 | 1.09 | 0.13 | 156.85 | 7.96 | ||||
最大值 | 67.6 | 317.0 | 6.78 | 80 124.29 | 810.10 | 4 237.93 | 101 093.12 | 37 310.28 | 1 933.05 | 221 574.89 | 18 963.90 | 11.43 | 6.85 | 0.96 | 111.00 | 8.48 | ||||
最小值 | <1.0 | <10.0 | <0.01 | 74.82 | 21.72 | 24.90 | 90.83 | 124.30 | 69.89 | 388.90 | 156.60 | <0.2 | <0.01 | <0.001 | -46.00 | 6.58 | ||||
均值 | 6.2 | 82.3 | 1.38 | 15 106.05 | 302.82 | 979.98 | 19 187.87 | 8 517.93 | 331.10 | 44 292.45 | 4 790.63 | 3.42 | 1.47 | 0.14 | 39.15 | 7.74 | ||||
最大值 | 5.0 | 40.0 | 1.83 | 423.21 | 172.15 | 190.40 | 553.35 | 1 050.71 | 353.99 | 2 591.80 | 1 213.70 | 5.80 | 0.14 | <0.001 | 225.00 | 8.40 | ||||
最小值 | <1.0 | <10.0 | 0.66 | 121.50 | 25.98 | 3.66 | 91.54 | 177.19 | 121.60 | 522.57 | 108.60 | <0.2 | <0.01 | <0.001 | 106.00 | 7.77 | ||||
均值 | 1.3 | 34.5 | 1.03 | 198.46 | 105.02 | 77.20 | 270.15 | 449.94 | 227.52 | 1 240.66 | 580.02 | 2.60 | 0.04 | <0.001 | 165.50 | 8.12 | ||||
蒸发区 | 单一结构潜水 (7150 m, n=87) 承压水区潜水 (818 m, n=6) 浅层承压水 (2560 m, n=17) 深层承压水 (100110 m, n=6) | 最大值 | 43.0 | 473.0 | 23.23 | 9 625.30 | 702.10 | 1 307.97 | 13 462.92 | 8 913.20 | 1 288.00 | 34 431.90 | 6 549.30 | 25.17 | 33.50 | 6.55 | 253.00 | 10.50 | ||
最小值 | <1.0 | <10.0 | <0.01 | 63.22 | 12.03 | 9.57 | 67.31 | 97.79 | 51.66 | 396.39 | 81.06 | <0.2 | <0.01 | <0.001 | -59.00 | 7.07 | ||||
均值 | 3.1 | 46.4 | 2.15 | 748.30 | 139.58 | 158.16 | 970.73 | 883.09 | 408.82 | 3 132.58 | 999.27 | 2.41 | 1.34 | 0.25 | 142.24 | 7.87 | ||||
最大值 | 35.0 | 70.0 | 16.20 | 5 949.27 | 396.20 | 1 533.06 | 5 668.60 | 6 961.23 | 726.20 | 19 120.29 | 6 762.20 | 1.44 | 13.01 | 1.20 | 168.00 | 8.25 | ||||
最小值 | <1.0 | <10.0 | 0.89 | 832.50 | 79.04 | 175.21 | 1 062.86 | 1 320.13 | 390.61 | 4 578.02 | 1 272.30 | 0.47 | <0.01 | <0.001 | 168.00 | 7.29 | ||||
均值 | 6.7 | 45.0 | 6.38 | 2 245.91 | 232.07 | 574.12 | 2 537.99 | 3 699.41 | 538.23 | 9 587.07 | 2 943.13 | 0.92 | 3.30 | 0.26 | 168.00 | 7.79 | ||||
最大值 | 61.2 | 2 637.0 | 5.40 | 121 075.28 | 1 012.62 | 25 366.14 | 172 922.44 | 54 147.68 | 1 428.15 | 358 694.00 | 106 956.45 | 31.27 | 9.14 | 3.19 | 205.00 | 8.44 | ||||
最小值 | <1.0 | <10.0 | 0.07 | 74.76 | 34.10 | 27.50 | 99.20 | 132.18 | 85.45 | 519.31 | 198.40 | <0.2 | <0.01 | <0.001 | -80.00 | 6.30 | ||||
均值 | 5.8 | 316.6 | 1.17 | 32 599.35 | 327.02 | 3 154.15 | 43 522.74 | 16 078.90 | 309.51 | 95 869.72 | 13 801.64 | 3.70 | 3.10 | 0.47 | -12.90 | 7.58 | ||||
最大值 | <1.0 | 40.0 | 2.80 | 862.60 | 190.00 | 245.60 | 1 094.00 | 1 102.00 | 695.20 | 3 865.00 | 1 486.00 | 3.29 | 1.86 | 0.24 | 186.00 | 8.20 | ||||
最小值 | <1.0 | <10.0 | 1.02 | 222.58 | 51.75 | 34.31 | 311.77 | 211.02 | 106.30 | 959.69 | 270.50 | 0.49 | <0.01 | <0.001 | 53.00 | 7.80 | ||||
均值 | <1.0 | 18.3 | 1.92 | 373.87 | 113.74 | 97.43 | 511.06 | 485.55 | 267.54 | 1 737.95 | 685.23 | 1.28 | 0.45 | 0.06 | 97.25 | 7.98 |
图10 地下水中砷浓度与 NO 3 -(a)、 SO 4 2 -(b)、 HCO 3 -(c)、Fe(d)、Mn(e)浓度之间的关系
Fig.10 Correlations between groundwater arsenic content and NO 3 -(a), SO 4 2 -(b), HCO 3 -(c), Fe(d), Mn(e) contents
图11 研究区地下水中氟离子浓度与Ca2+(a)、Mg2+(b)、TDS(c)、 HCO 3 -(d)浓度和SI(萤石)(e)的关系
Fig.11 Correlations between groundwater fluorine content and Ca2+ (a), Mg2+ (b), TDS (c), HCO 3 -(d) contents or SIfluorite (e)
图12 研究区地下水碘浓度与Eh(a)和Fe(b)、TDS(c)、 HCO 3 -(d)浓度的关系
Fig.12 Correlations between groundwater iodine content and Eh (a) or Fe (b), TDS(c), HCO 3 - (d) contents
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI URL |
[2] |
MORE S, DHAKATE R, RATNALU G V, et al. Hydrogeochemistry and Health Risk Assessment of groundwater and surface water in fluoride affected area of Yadadri-Bhuvanagiri District, Telangana State, India[J]. Environmental Earth Sciences, 2021, 80(7): 1-18.
DOI URL |
[3] |
ANDERSSON M, KARUMBUNATHAN V, ZIMMERMANN M B. Global iodine status in 2011 and trends over the past decade[J]. The Journal of Nutrition, 2012, 142(4): 744-750.
DOI URL |
[4] | 郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007, 22(11): 1109-1117. |
[5] | 周殷竹. 基于碳、 铁稳定同位素的高砷地下水生物地球化学研究[D]. 北京: 中国地质大学(北京), 2018. |
[6] | FORDYCE F M. Fluorine: human health risks[M]// Encyclopedia of environmental health. Amsterdam: Elsevier, 2011: 776-785. |
[7] | 栾风娇. 新疆南部典型区地下水中氟的分布特征及富集因素研究[D]. 乌鲁木齐: 新疆农业大学, 2017. |
[8] |
TAYLOR P N, ALBRECHT D, SCHOLZ A, et al. Global epidemiology of hyperthyroidism and hypothyroidism[J]. Nature Reviews Endocrinology, 2018, 14(5): 301-316.
DOI URL |
[9] | 王妍妍, 马腾, 董一慧, 等. 内陆盆地区高碘地下水的成因分析: 以内蒙古河套平原杭锦后旗为例[J]. 地学前缘, 2014, 21(4): 66-73. |
[10] |
RODRÍGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868.
DOI URL |
[11] |
WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933.
DOI URL |
[12] |
VITHANAGE M, BHATTACHARYA P. Fluoride in the environment: sources, distribution and defluoridation[J]. Environmental Chemistry Letters, 2015, 13(2): 131-147.
DOI URL |
[13] | 申红梅, 张树彬, 刘守军, 等. 全国高水碘地区地理分布及高碘地区水碘等值线研究[J]. 中国地方病学杂志, 2007, 26(6): 658-661. |
[14] |
ZHOU Y Z, GUO H M, ZHANG Z, et al. Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2018, 163: 70-79.
DOI URL |
[15] | 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. |
[16] | BERGER T, MATHURIN F A, DRAKE H, et al. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks[J]. Science of the Total Environment, 2016, 569/570: 948-960. |
[17] |
CHAE G T, YUN S T, KWON M J, et al. Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater[J]. Geochemical Journal, 2006, 40(1): 95-102.
DOI URL |
[18] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268. |
[19] |
HOU X L, HANSEN V, ALDAHAN A, et al. A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta, 2009, 632(2): 181-196.
DOI URL |
[20] | QIAN K, LI J X, CHI Z Y, et al. Natural organic matter-enhanced transportation of iodine in groundwater in the Datong Basin: impact of irrigation activities[J]. Science of the Total Environment, 2020, 730: 138460. |
[21] |
XUE X B, LI J X, XIE X J, et al. Effects of depositional environment and organic matter degradation on the enrichment and mobilization of iodine in the groundwater of the North China Plain[J]. Science of the Total Environment, 2019, 686: 50-62.
DOI URL |
[22] | LI J X, WANG Y T, XUE X B, et al. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments[J]. Science of the Total Environment, 2020, 745: 140922. |
[23] |
ZHOU J L, LI G M, LIU F, et al. DRAV model and its application in assessing groundwater vulnerability in arid area: a case study of pore phreatic water in Tarim Basin, Xinjiang, Northwest China[J]. Environmental Earth Sciences, 2010, 60(5): 1055-1063.
DOI URL |
[24] |
WANG W K, ZHANG Z Y, YIN L H, et al. Topical Collection: groundwater recharge and discharge in arid and semi-arid areas of China[J]. Hydrogeology Journal, 2021, 29(2): 521-524.
DOI URL |
[25] |
LI Q, ZHOU J L, ZHOU Y Z, et al. Variation of groundwater hydrochemical characteristics in the plain area of the Tarim Basin, Xinjiang Region, China[J]. Environmental Earth Sciences, 2014, 72(11): 4249-4263.
DOI URL |
[26] |
ZHOU Y Z, ZENG Y Y, ZHOU J L, et al. Distribution of groundwater arsenic in Xinjiang, P.R. China[J]. Applied Geochemistry, 2017, 77: 116-125.
DOI URL |
[27] | 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. |
[28] | 陈俊良, 杨红霞, 刘崴, 等. HPLC-ICP-MS法研究内蒙古锡盟和新疆塔城高碘地区地下水的总碘及碘形态特征[J]. 岩矿测试, 2017, 36(6): 614-623. |
[29] | 陈劲松, 周金龙, 曾妍妍, 等. 新疆阿克苏地区平原区高砷地下水分布特征及富集因素分析[J]. 环境化学, 2021, 40(1): 254-262. |
[30] | 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. |
[31] | SU H, KANG W D, KANG N, et al. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China[J]. Environmental Research, 2021, 200: 111476. |
[32] | 王红太, 周金龙, 曾妍妍, 等. 新疆喀什地区饮用地下水碘分布及其富集因素分析[J]. 新疆农业大学学报, 2019, 42(2): 145-150. |
[33] | FAN W, ZHOU J L, ZHOU Y Z, et al. Factors influencing the distribution of arsenic, fluorine and iodine in shallow groundwater in the oasis zone in the southern margin of the Tarim Basin in Xinjiang, P.R. China[J]. E3S Web of Conferences, 2019, 98: 09006. |
[34] |
TANG L J, HUANG T Z, QIU H J, et al. Fault systems and their mechanisms of the formation and distribution of the Tarim Basin, NW China[J]. Journal of Earth Science, 2014, 25(1): 169-182.
DOI URL |
[35] | 李文鹏, 郝爱兵, 刘振英, 等. 塔里木盆地地下水开发远景区研究[M]. 北京: 地质出版社, 2000. |
[36] | 王彩华. 新疆维吾尔自治区环境地质图集[CM]. 昌吉: 新疆金版印务有限公司, 2005. |
[37] | 张慧, 马英杰, 樊自立, 等. 塔里木河地表及地下水中氟离子的分布和变化规律[J]. 环境科学学报, 2000, 20(5): 579-583. |
[38] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[39] |
LI J X, WANG Y X, XIE X J, et al. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, Northern China[J]. Environmental Science: Processes and Impacts, 2013, 15(4): 848-859.
DOI URL |
[40] |
XUE X B, LI J X, XIE X J, et al. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain[J]. Water Research, 2019, 159: 480-489.
DOI URL |
[41] | 鲁宗杰, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义[J]. 地球科学, 2017, 42(5): 771-782. |
[42] | 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020. |
[43] | 杨素珍, 郭华明, 唐小惠, 等. 内蒙古河套平原地下水砷异常分布规律研究[J]. 地学前缘, 2008, 15(1): 242-249. |
[44] |
GUO H M, LI Y, ZHAO K, et al. Removal of arsenite from water by synthetic siderite: behaviors and mechanisms[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1847-1854.
DOI URL |
[45] |
KUMAR M, DAS N, GOSWAMI R, et al. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system[J]. Chemosphere, 2016, 164: 657-667.
DOI URL |
[46] |
LI J X, ZHOU H L, QIAN K, et al. Fluoride and iodine enrichment in groundwater of North China Plain: evidences from speciation analysis and geochemical modeling[J]. Science of the Total Environment, 2017, 598: 239-248.
DOI URL |
[47] | 吴初, 武雄, 张艳帅, 等. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018, 25(4): 307-315. |
[48] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong Basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-745.
DOI URL |
[49] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI URL |
[50] |
AMIRI V, SOHRABI N, DADGAR M A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat Plain, central Iran[J]. Environmental Earth Sciences, 2015, 74(7): 6163-6176.
DOI URL |
[51] |
HE X D, LI P Y, WU J H, et al. Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: research from published data[J]. Environmental Geochemistry and Health, 2021, 43(2): 791-812.
DOI URL |
[52] |
LI J X, WANG Y X, XIE X J, et al. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2012, 118: 77-89.
DOI URL |
[53] | 王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780. |
[54] |
NICKSON R, MCARTHUR J, BURGESS W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395(6700): 338.
DOI URL |
[55] | GAO Z P, JIA Y F, GUO H M, et al. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model[J]. Water Resources Research, 2020, 56(2): e2019WR025492. |
[56] |
GUO H M, LIU C, LU H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: an iron isotope approach[J]. Geochimica et Cosmochimica Acta, 2013, 112: 130-145.
DOI URL |
[57] | 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 2021, 46(6): 1966-1977. |
[58] | 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1986. |
[59] |
HU Q H, ZHAO P H, MORAN J E, et al. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites[J]. Journal of Contaminant Hydrology, 2005, 78(3): 185-205.
DOI URL |
[60] |
SHETAYA W H, YOUNG S D, WATTS M J, et al. Iodine dynamics in soils[J]. Geochimica et Cosmochimica Acta, 2012, 77: 457-473.
DOI URL |
[61] |
PI K F, WANG Y X, XIE X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, Northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661.
DOI URL |
[1] | 赵增锋, 王楚尤, 邱小琮, 周瑞娟, 杨强强, 赵睿智. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J]. 地学前缘, 2024, 31(6): 462-473. |
[2] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[3] | 付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380. |
[4] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[5] | 梁慧芝, 郭朝晖, 张云霞, 徐锐. 含砷尾矿中砷铊矿相特征及其释放机制[J]. 地学前缘, 2024, 31(2): 20-30. |
[6] | 谌宏伟, 杨瑶, 黄荷, 周慧, 彭向训, 于莎莎, 喻娓厚, 李正最, 王赵国. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究[J]. 地学前缘, 2024, 31(2): 423-434. |
[7] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[8] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
[9] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
[10] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[11] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[12] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[13] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
[14] | 张玉婷, 段丽琴, 宋金明, 张乃星, 尹美玲, 李学刚, 袁华茂. 长江口沉积物-水界面砷的迁移转化机制与微生物调控分析[J]. 地学前缘, 2022, 29(4): 144-155. |
[15] | 鹿帅, 苏小四, 冯晓语, 孙超. 河水入渗过程中近岸带地下水中砷的形成与影响因素研究[J]. 地学前缘, 2022, 29(4): 455-467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||