

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 342-353.DOI: 10.13745/j.esf.sf.2025.10.26
蒋忠诚1,2(
), 罗为群1,2, 吴泽燕1,2,*(
), 章程1, 邹胜章1
收稿日期:2025-08-20
修回日期:2025-10-20
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*吴泽燕(1990—),女,博士,助理研究员,从事岩溶生态与碳循环研究。E mail:wuzeyan@mail.cgs.gov.cn
作者简介:蒋忠诚(1962—),男,研究员,博士生导师,主要研究方向为岩溶生态学。E-mail: jzhongcheng@mail.cgs.gov.cn
基金资助:
JIANG Zhongcheng1,2(
), LUO Weiqun1,2, WU Zeyan1,2,*(
), ZHANG Cheng1, ZOU Shengzhang1
Received:2025-08-20
Revised:2025-10-20
Online:2026-01-25
Published:2025-11-10
摘要:
20世纪末以来,我国南方表层岩溶水与石漠化综合治理的相关性研究推动了我国生态水文学的形成与发展。取得的突出研究进展包括:(1)是开展了高度依赖地下水的岩溶生态系统研究,岩溶生态系统普遍发育浅根系和深根系这二态根系,有的深根可达100多m,完全依赖岩溶地下水,但依赖程度因水文地质条件而异。(2)是生态系统对岩溶水的调蓄功能研究,生态系统对表层岩溶带水资源具有调蓄功能,特别是水源林对于表层岩溶水资源的涵养具有重要价值,使表层岩溶泉成为西南岩溶山区居民分散供水的主要水源;此外,生态调控促进了岩溶水资源的可持续利用。(3)是岩溶关键带结构及生态水文模型研究,阐明了岩溶关键带及结构的特点,建立了岩溶生态水文耦合模型,推动岩溶区水资源调控和水土漏失有效防治。岩溶关键带“六水循环”、岩溶关键带生态水文监测网络、极端气候和人类干扰下岩溶生态水文的响应过程是下一步的重要研究方向。
中图分类号:
蒋忠诚, 罗为群, 吴泽燕, 章程, 邹胜章. 我国岩溶生态水文学研究进展与展望[J]. 地学前缘, 2026, 33(1): 342-353.
JIANG Zhongcheng, LUO Weiqun, WU Zeyan, ZHANG Cheng, ZOU Shengzhang. Research progress and prospect of karst eco-hydrology in China[J]. Earth Science Frontiers, 2026, 33(1): 342-353.
| [1] | IVAKINI A, OSTROVSKIIV N, TOIVONEN N R. Asymptotic theory for widths of the Penning process with ion excitation[J]. Optics & Spectroscopy, 1991, 70(51): 689-691. |
| [2] | 李阳兵, 邵景安, 王世杰, 等. 岩溶生态系统脆弱性研究[J]. 地理科学进展, 2006, 25(5): 1-9. |
| [3] | 国家自然科学基金委员会, 中国科学院. 中国学科发展战略: 水文地质学[M]. 北京: 科学出版社, 2021: 186-188. |
| [4] | 张之淦, 苏宗明, 吴其祥, 等. 岩溶干旱治理[M]. 武汉: 中国地质大学出版社, 2005. |
| [5] |
JIANG Z C, LIAN Y Q, QIN X Q. Rocky desertification in Southwest China: impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12.
DOI URL |
| [6] | 蒋忠诚. 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998(4): 322-326. |
| [7] |
HUNTON P W. Hydrogeologic characteristics and deforestation of the stone forest karst aquifers of south China[J]. Groundwater, 1992, 30: 167-176.
DOI URL |
| [8] | JIANG Z C, YUAN D X. Discussion of ‘Hydrogeologic characteristics and deforestation of the stone karst aquifers of south China’ by Peter W.Huntoon[J]. Groundwater, 1993, 3: 325-327. |
| [9] | 蒋忠诚, 王瑞江, 裴建国, 等. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶, 2001, 20(2): 106-110. |
| [10] | 袁道先. 论岩溶生态系统[J]. 地质学报, 2001, 20(3): 432-432. |
| [11] | 梁永平, 申豪勇, 赵春红, 等. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3): 363-380. |
| [12] | 袁道先. 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98-100. |
| [13] | JIANG Z C, ZHANG C, QIN X Q, et al. Structural features and function of karst critical zone[J]. Acta Geologica Sinica (English Edition), 2019, 93(S3): 109-112. |
| [14] | 章程, 蒋忠诚, CHRIS G, 等. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶, 2019, 38(3): 301-306. |
| [15] |
BAI B, JIANG Z C, ZHANG C, et al. New achievements of IGCP 661 structure, substance cycle, and environment sustainability of the critical zone in karst systems (2017-2021)[J]. Episodes, 2023, 46(4): 665-670.
DOI URL |
| [16] | HATTON T, EVANS R. Dependence of ecosystems on groundwater and its significance to Australia[M]. Canberra: Land & Water Resources Research & Development Corporation, 1998: 18-20. |
| [17] |
BONACCI O, PIPAN T, CULVER D C. A framework for karst ecohydrology[J]. Environmental Geology, 2009, 56: 891-900.
DOI URL |
| [18] | KLOVE B, ALAE-AHO P, BERTRAND G, et al. Groundwater dependent ecosystems. Part I: hydroecological status and trends[J]. Environmental Science & Policy, 2011, 14(7): 770-781. |
| [19] |
ARNAUD W, OLIVER K, ANTOINE T, et al. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring[J]. Hydrology and Earth System Sciences, 2018, 22: 1563-1592.
DOI URL |
| [20] |
LIU J C, SHEN L C, WANG Z X, et al. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley[J]. Journal of Hydrology, 2019, 571: 485-493.
DOI URL |
| [21] |
QUEREJETA J I, ESTRADA-MEDINA H, ALLEN M F, et al. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate[J]. Oecologia, 2007, 152: 26-36.
DOI PMID |
| [22] |
NIE Y P, CHEN H S, WANG K L, et al. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of Southwest China[J]. Plant Ecology, 2014, 215(10): 1099-1109.
DOI URL |
| [23] |
RONG L, CHEN X, CHEN X H, et al. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China[J]. Hydrological Processes, 2011, 25(23): 3666-3675.
DOI URL |
| [24] |
LUO X, LIANG X, LIN J. Plant transpiration and groundwater dynamics in water-limited climates: impacts of hydraulic redistribution[J]. Water Resources Research, 2016, 52: 4416-4437.
DOI URL |
| [25] |
FU Z Y, CHEN H S, ZHANG W, et al. Sub-surface flow in a soil-mantled subtropical dolomite karst slope: afield rainfall simulation study[J]. Geomorphology, 2015, 250: 1-14.
DOI URL |
| [26] |
ZHANG J, WANG S, FU Z Y, et al. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in Southwest China[J]. Journal of Hydrology, 2022, 609: 127779.
DOI URL |
| [27] |
JOOP K, JOS D, IWAN S, et al. Agrohydrological analysis of groundwater recharge and land use changes in the Pampas of Argentina[J]. Agricultural Water Management, 2019, 213: 843-857.
DOI URL |
| [28] |
DENG Y, KE J, WU S, et al. Responses of plant water uptake to groundwater depth in limestone outcrops[J]. Journal of Hydrology, 2020, 590: 125377.
DOI URL |
| [29] | JACKSON R B, MOORE L A, HOFFMANN W A, et al. Ecosystem rooting depth determined with caves and DNA[J]. Proceedings of the National Acodenry of Sciences of the United States of America, 1999, 96: 11387-11392. |
| [30] |
JIANG Z, LIU H, WANG H, et al. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity[J]. Nature Communication, 2020, 11: 2392.
DOI |
| [31] | WHITE W B. Role of solution kinetics in the development of karst aquifers[M]. IAH Memoirs Volume XII. Huntsville: University of Alabama in Huntsville Press, 1977: 503-517. |
| [32] |
DENG Y, ZHU A J, YI F, et al. Groundwater recharge mechanisms in a vegetated epikarst spring catchment using water isotopes methods[J]. Carbonates and Evaporites, 2023, 38: 19.
DOI |
| [33] | 刘绍华, 汤庆佳, 罗为群, 等. 长江与珠江分水岭地带岩溶石漠化的退化及其对生态的影响[J/OL]. 地质通报, 2025: 1-10.[2025-08-20]. https://link.cnki.net/urlid/11.4648.p.20250530.1523.004. |
| [34] | YUAN D X. Rock desertification in the subtropical karst of South China[J]. Zeitschrift für Geomorphologie, Neue Folge, Supplement Band, 1997, 108: 81-90. |
| [35] | 曹建华, 袁道先, 章程, 等. 受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004, 32(1): 1-8. |
| [36] | 袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016. |
| [37] | 梁彬, 裴建国, 李兆林, 等. 湖南洛塔岩溶水资源开发与利用[M]//中国地质调查局. 中国西南地区岩溶地下水资源开发与利用. 北京: 地质出版社, 2006: 183-194. |
| [38] | 梁永平, 韩行瑞, 王维泰, 等. 中国北方岩溶地下水环境问题与保护[M]. 北京: 地质出版社, 2013. |
| [39] | 袁道先, 覃政教, 黄桂强, 等. 西南岩溶石山地区重大环境问题及对策研究[M]. 北京: 科学出版社, 2014. |
| [40] | 王明章. 贵州省岩溶地下水资源及其开发利用[M]//中国地质调查局. 中国西南地区岩溶地下水资源开发与利用. 北京: 地质出版社, 2006: 35-61. |
| [41] | 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199-219. |
| [42] | 刘馨泽, 高文皓, 徐荣林, 等. 四川黄龙高山柳灌丛区钙华彩池地表水渗漏机制探究[J]. 水文地质工程地质, 2024, 51(5): 195-206. |
| [43] | 蒋忠诚, 代群威, 董发勤, 等. 国内外钙华岩溶景观的研究进展与展望[J]. 中国岩溶, 2021, 40(1): 4-10. |
| [44] | 蒋忠诚, 李先琨, 胡宝清, 等. 广西岩溶山区石漠化及其综合治理研究[M]. 北京: 科学出版社, 2011. |
| [45] | 邓新辉, 蒋忠诚, 覃小群, 等. 广西弄拉岩溶植被的表层水文地球化学效应[J]. 山地学报, 2008, 26(2): 170-179. |
| [46] | DENG Y, JIANG Z C, KUO Y M, et al. Effects of canopy interception on epikarst water chemistry and its response to precipitation in Southwest China[J]. Carbonates Evaporites, 2017(1): 1-10. |
| [47] |
JIANG Y J YUAN, D X, ZHANG C, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China[J]. Hydrogeology Journal, 2008, 16(4): 727-735.
DOI URL |
| [48] |
JIANG Y J, WU Y, YUAN D X. Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong underground river system in Yunnan, China[J]. Environmental Science & Technology, 2009, 43: 7676-7683.
DOI URL |
| [49] | ALBINET M, MARGAT J. Groundwater pollution vulnerability mapping[J]. Bulletin du Bureau de Recherches Géologiques et Minières 2nd Series, 1970, 3(4): 13-22. |
| [50] | ALLER L, THORNHILL J. Drastic: a standardized system for evaluating ground water pollution potential using hydrogeologic settings[R]. Washington DC: Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 1987. |
| [51] | FRANCOIS Z. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers final report[R]. Luxembourg: Office for Official Publications of the European Communities, 2003. |
| [52] | 刘红, 张君, 于桑, 等. 基于优化DRASTIC模型的地下水污染风险评价研究: 以山东省辖南水北调区域为例[J]. 中国岩溶, 2024, 43(3): 513-526. |
| [53] | 邹胜章, 李录娟, 卢海平, 等. 岩溶地下水系统防污性能评价方法[J]. 地球学报, 2014, 35(2): 262-268. |
| [54] | 蒲俊兵. 地球关键带与岩溶关键带: 结构、 特征、 底界[J]. 地质科技通报, 2022, 41(5): 230-241. |
| [55] |
HARTMANN A, GOLDSCHEIDER N, WAGENER T, et al. Karst water resources in a changing world: review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52: 218-242.
DOI URL |
| [56] | 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 2022, 41(3): 356-364. |
| [57] | 曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 2018, 5(5): 1-12. |
| [58] | BAKALOWICZ M. Epikarst[A]//Encyclopedia of Caves. London: Elsevier, 2012: 288-295. |
| [59] |
张君, 陈洪松, 聂云鹏, 等. 西南喀斯特关键带结构及其水文过程研究进展[J]. 应用生态学报, 2024, 35(4): 985-996.
DOI |
| [60] |
吴泽燕, 章程, 蒋忠诚, 等. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
DOI |
| [61] | 张轶博, 王锦国, 刘芮彤. 岩溶包气带水流衰减过程与调蓄能力影响机制研究[J]. 中国岩溶, 2023, 42(6): 1140-1148. |
| [62] | 杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述[J]. 水力学报, 2010, 41(10): 1142-1149. |
| [63] | 陈喜, 张志才, 容丽, 等. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京: 科学出版社, 2014. |
| [64] |
ZHANG Z C, CHEN X, GHADOUANI A, et al. Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of Southwest China[J]. Hydrological Processes, 2011, 25: 2456-2470.
DOI URL |
| [65] |
ZHANG Z C, CHEN X, SOULSBY C. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 2017, 31(19): 3421-3436.
DOI URL |
| [66] | 马从文, 张志才, 陈喜, 等. 基于机器学习的西南岩溶泉流量模拟研究[J]. 中国岩溶, 2024, 43(1): 48-56. |
| [67] | LI Z W, XU X L, ZHU J X, et al. Scale-specific controls of sediment yield in karst watersheds[J]. Journal of Hydrology, 2020, 583: 1-12. |
| [68] |
CAI L B, CHEN X, HUANG R C, et al. Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of Southwest China[J]. Journal of Hydrology, 2022, 604: 127231.
DOI URL |
| [1] | 董艳辉, 王礼恒, 张倩, 周志超, 文冬光, 李守定, 万力. 深部水文地质学裂隙渗流研究挑战与进展[J]. 地学前缘, 2026, 33(1): 296-312. |
| [2] | 许光泉, 杨婷婷, 王传兵, 程海燕, 朱昌淮, 周继生, 贺世芳. 淮南煤田奥陶系古岩溶发育特征及形成机理研究[J]. 地学前缘, 2026, 33(1): 354-368. |
| [3] | 蒲俊兵. 岩溶地下水系统的碳循环[J]. 地学前缘, 2026, 33(1): 369-383. |
| [4] | 乔小娟, 罗承可, 柴新宇, 于文瑾. 基于机器学习的岩溶裂隙空间分布预测研究:以北京房山为例[J]. 地学前缘, 2026, 33(1): 405-418. |
| [5] | 黄林显, 徐征和, 支传顺, 李双, 刘治政, 邢立亭, 朱恒华, 王晓玮, 毕雯雯, 胡晓农. 基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究[J]. 地学前缘, 2026, 33(1): 419-431. |
| [6] | 李廷栋, 刘勇, 王淼, 刘彩云. 中国大陆地貌特征及其成因探讨[J]. 地学前缘, 2025, 32(6): 245-255. |
| [7] | 冯艳芳, 李济泽, 金霄, $\boxed{\hbox{邓晋福}}$, 解雅麟, 牛露, 熊银洪. 中国东北地区侏罗纪—白垩纪侵入(岩)弧大地构造环境与成矿关系探讨[J]. 地学前缘, 2025, 32(6): 338-349. |
| [8] | 肖庆辉, 刘勇, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 张克信, 庞建峰, 邱瑞照, 赵国春, 张恒, 程扬, 范玉须, 付利. 中国东部陆缘中、新生代洋板块深地质作用追踪[J]. 地学前缘, 2025, 32(6): 9-28. |
| [9] | 陈伟志, 陶兰初, 李静婷, 张亚, 巴永, 宋琳. 高原湿地纳帕海流域地表水水化学特征及控制因素[J]. 地学前缘, 2025, 32(5): 493-510. |
| [10] | 吴泽燕, 李强, 章程, 蒋忠诚, 罗为群, 胡兆鑫, 涂纯. 岩溶区开荒退耕对土壤碳氮耦合关系的影响及作用机制[J]. 地学前缘, 2025, 32(5): 524-533. |
| [11] | 杨德彬, 高济元, 张恒, 蔡忠贤, 吕艳萍, 张娟, 汪彦. 塔里木盆地塔河油田奥陶系大型岩溶暗河类型、发育特征及其形成条件[J]. 地学前缘, 2025, 32(4): 483-496. |
| [12] | 黄诗雯, 夏绮文, 何江涛, 何宝南, 陈翠柏, 孙继朝. 华北平原浅层地下水碘的分区特征及成因研究[J]. 地学前缘, 2025, 32(4): 510-522. |
| [13] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
| [14] | 李凤磊, 林承焰, 王蛟, 任丽华, 张国印, 朱永峰, 李世银, 张银涛, 关宝珠. 超深层断缝带岩溶缝洞体储层结构分析与智能预测[J]. 地学前缘, 2025, 32(2): 311-331. |
| [15] | 柳青青, 王学求, 张必敏, 周建, 王玮, 刘汉粮, 刘东盛, 周怡宁, 常婵. 中国土壤硼地球化学异常特征与找矿远景区预测[J]. 地学前缘, 2025, 32(1): 50-60. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||