[1] |
张抗. 塔河油田的发现及其地质意义[J]. 石油与天然气地质, 1999, 20(2): 120-124, 132.
|
[2] |
康玉柱. 塔里木盆地塔河大油田形成的地质条件及前景展望[J]. 中国地质, 2003, 30(3): 315-319.
|
[3] |
XU X Y, CHEN Q H, ZHANG Y G, et al. Research progress and prospect of Ordovician carbonate rocks in Tahe oilfield: karst feature[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(11): 3889-3902.
|
[4] |
TRAN D A, GOEPPERT N, PALMER A N, et al. Development and structure of karstification of the Dong Van Karst Plateau UNESCO Global Geopark, North Vietnam based on cave survey data[J]. International Journal of Earth Sciences, 2022, 111(5): 1573-1592.
|
[5] |
PHAM N, FOMEL S, DUNLAP D. Automatic channel detection using deep learning[J]. Interpretation, 2019, 7(3): SE43-SE50.
|
[6] |
LITTVA J, HÓK J, BELLA P. Cavitonics: using caves in active tectonic studies (Western Carpathians, case study)[J]. Journal of Structural Geology, 2015, 80: 47-56.
|
[7] |
SHANOV S, KOSTOV K. Dynamic tectonics and karst[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
|
[8] |
LABIB M A, HARYONO E, SUNARTO. The development of cave passage in Donomulyo, Malang-Indonesia[J]. E3S Web of Conferences, 2019, 76: 04010.
|
[9] |
BOĊIĆ N, FAIVRE S, KOVAĊIĆ M, et al. Cave development under the influence of Pleistocene glaciation in the Dinarides: an example from Stirovaċa Ice Cave (Velebit Mt., Croatia)[J]. Zeitschrift Für Geomorphologie, 2012, 56(4): 409-433.
|
[10] |
马永生, 蔡勋育, 李慧莉, 等. 深层-超深层碳酸盐岩储层发育机理新认识与特深层油气勘探方向[J]. 地学前缘, 2023, 30(6): 1-13.
DOI
|
[11] |
林忠民. 塔河油田奥陶系碳酸盐岩储层特征及成藏条件[J]. 石油学报, 2002, 23(3): 23-26, 7.
DOI
|
[12] |
ZHANG S, JIN Q, SUN J F, et al. Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 354-366.
DOI
|
[13] |
牛玉静. 缝洞型碳酸盐岩油藏溶洞储集体岩溶塌陷结构特征研究[D]. 北京: 中国地质大学(北京), 2012.
|
[14] |
柳建华, 蔺学旻, 张卫锋, 等. 塔河油田碳酸盐岩储层有效性测井评价实践与思考[J]. 石油与天然气地质, 2014, 35(6): 950-958.
|
[15] |
PALMER A N. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin, 1992, 103(1): 1-21.
|
[16] |
WU X M. Directional structure-tensor-based coherence to detect seismic faults and channels[J]. Geophysics, 2017, 82(2): A13-A17.
|
[17] |
鲁新便, 何成江, 邓光校, 等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质, 2014, 36(3): 268-274.
|
[18] |
FRANTZ Y, COLLON P, RENARD P, et al. Analysis and stochastic simulation of geometrical properties of conduits in karstic networks[J]. Geomorphology, 2021, 377: 107480.
|
[19] |
李源, 鲁新便, 蔡忠贤, 等. 塔里木盆地塔河油田岩溶峡谷区海西早期洞穴系统发育模式[J]. 古地理学报, 2017, 19(2): 364-372.
DOI
|
[20] |
姜应兵, 李兴娟. 塔里木盆地塔河油田TH12402井区中下奥陶统古岩溶洞穴发育模式[J]. 古地理学报, 2021, 23(4): 824-836.
DOI
|
[21] |
王家豪, 王华, 赵忠新, 等. 层序地层学应用于古地貌分析: 以塔河油田为例[J]. 地球科学, 2003, 28(4): 425-430.
|
[22] |
冯志强, 李萌, 郭元岭, 等. 中国典型大型走滑断裂及相关盆地成因研究[J]. 地学前缘, 2022, 29(6): 206-223.
DOI
|
[23] |
何建军, 李琼, 赵锡奎, 等. 阿克库勒凸起上奥陶统地层多期剥蚀的剖分与古构造复原[J]. 物探化探计算技术, 2011, 33(5): 536-543, 464.
|
[24] |
久凯, 丁文龙, 李春燕, 等. 含油气盆地古构造恢复方法研究及进展[J]. 岩性油气藏, 2012, 24(1): 13-19.
|
[25] |
周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系[J]. 地球科学, 2022, 47(2): 437-451.
|
[26] |
王清华, 杨海军, 李勇, 等. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式[J]. 地学前缘, 2022, 29(6): 239-251.
DOI
|
[27] |
WANG S H, SI X, CAI Z X, et al. Structural augmentation in seismic data for fault prediction[J]. Applied Sciences, 2022, 12(19): 9796.
|
[28] |
韩长城, 林承焰, 鲁新便, 等. 塔河油田奥陶系岩溶地貌对储集层的控制作用[J]. 新疆石油地质, 2016, 37(4): 417-422.
|
[29] |
何宇彬. 试论喀斯特水动力剖面模式[J]. 地球科学, 1994, 19(1): 119-127.
|
[30] |
王增银, 沈继方, 徐瑞春, 等. 鄂西清江流域岩溶地貌特征及演化[J]. 地球科学, 1995, 20(4): 439-444.
|
[31] |
蔡忠贤, 刘永立, 段金宝. 岩溶流域的水系变迁: 以塔河油田6区西北部奥陶系古岩溶为例[J]. 中国岩溶, 2009, 28(1): 30-34.
|
[32] |
吕艳萍, 姜应兵, 高济元, 等. 塔河西部奥陶系古岩溶小流域的划分及其地质意义[J]. 断块油气田, 2021, 28(4): 440-445.
|
[33] |
石文龙, 杨海风, 杜晓峰, 等. 渤海海域南部古水系恢复及其沉积耦合响应预测[J]. 地球科学, 2022, 47(11): 4075-4092.
|
[34] |
TIAN F, DI Q Y, JIN Q, et al. Multiscale geological-geophysical characterization of the epigenic origin and deeply buried paleokarst system in Tahe Oilfield, Tarim Basin[J]. Marine and Petroleum Geology, 2019, 102: 16-32.
|
[35] |
ZHANG H, CAI Z X, HAO F, et al. Hypogenic origin of paleocaves in the Ordovician carbonates of the Southern Tahe Oilfield, Tarim Basin, northwest China[J]. Geoenergy Science and Engineering, 2023, 225: 211669.
|
[36] |
MYLROIE J, MYLROIE J, MIDDLETON G. Rodrigues Island: carbonate deposition and karst processes as indicators of platform stability[J]. Carbonates and Evaporites, 2016, 31(4): 421-435.
|
[37] |
高进. 洞穴形成的水动力学因素[J]. 湘潭矿业学院学报, 1994, 9(3): 17-25.
|
[38] |
ENNES-SILVA R A, BEZERRA F H R, NOGUEIRA F CC, et al. Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil[J]. Tectonophysics, 2016, 666: 244-259.
|
[39] |
GOLDSCHEIDER N, NEUKUM C. Fold and fault control on the drainage pattern of a double-karst-aquifer system, Winterstaude, Austrian Alps[J]. Acta Carsologica, 2010, 39(2): 173-186.
|