地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 183-195.DOI: 10.13745/j.esf.sf.2023.11.51
刘贺1(), 宋树贤2, 孙梅1, 李双双1, 于小晶1,*(
), 戴九兰1,*(
)
收稿日期:
2023-09-08
修回日期:
2023-11-23
出版日期:
2024-03-25
发布日期:
2024-04-18
通信作者:
*于小晶,(1993—),女,博士后,主要从事土壤污染控制与生态修复工作。E-mail: 作者简介:
刘 贺(1999—),女,硕士研究生,主要从事土壤污染物防控研究工作。E-mail: 3259901442@qq.com
基金资助:
LIU He1(), SONG Shuxian2, SUN Mei1, LI Shuangshuang1, YU Xiaojing1,*(
), DAI Jiulan1,*(
)
Received:
2023-09-08
Revised:
2023-11-23
Online:
2024-03-25
Published:
2024-04-18
摘要:
微塑料(MPs)是指尺寸上限为5 mm的聚合物。作为一种新兴污染物,MPs广泛存在于海洋、陆地等不同环境中。研究发现,陆生环境是MPs一个重要的“汇”,其MPs的含量是海洋环境的4~23倍,MPs不仅影响土壤环境,还能够进入植物组织,并通过食物链等途径进入人体内,引发健康风险,成为迫切需要解决的环境污染问题。检测技术是研究环境污染物不可或缺的一个手段,关于陆生生态系统的研究刚起步,MPs检测技术还未发展成熟。目前,关于微塑料的检测主要分为前处理和分析检测:密度浮选、筛分过滤、萃取和消解等方法是前处理中常用的方法;定性定量检测以目检法、光谱法和质谱法为主,其中场发射扫描电镜(SEM)、激光共聚焦显微镜(CLSM)、拉曼光谱(Raman)、傅里叶变换红外光谱(FTIR)和热裂解-气相色谱/质谱法(Py-GC/MS)是最常用的仪器方法。而当面对复杂的环境样品时,往往需要结合多种方法进行分析。因此,本文通过文献整理,综述土壤及植物中MPs检测方法进展、不同检测技术的适用条件及优缺点,旨在为未来陆生生态系统MPs定性定量、MPs在植物中转移积累规律的研究提供科学参考。
中图分类号:
刘贺, 宋树贤, 孙梅, 李双双, 于小晶, 戴九兰. 土壤和植物中微塑料研究现状分析及检测方法研究进展[J]. 地学前缘, 2024, 31(2): 183-195.
LIU He, SONG Shuxian, SUN Mei, LI Shuangshuang, YU Xiaojing, DAI Jiulan. Microplastics in soils and plants: Current research status and progress on detection methods[J]. Earth Science Frontiers, 2024, 31(2): 183-195.
MPs类型 | 浮选液 | 分离效果 | 参考文献 |
---|---|---|---|
PP,0.89~0.93 g/cm3 PE,0.91~0.94 g/cm3 PS,1.01~1.06 g/cm3 ABS,1.04~1.08 g/cm3 PC,1.18~1.22 g/cm3 PVC,1.16~1.35 g/cm3 PET,1.38~1.41 g/cm3 | 1. H2O(1.00 g/cm3) 2. NaCl(1.17 g/cm3) 3. NaBr(1.46 g/cm3) 4. ZnCl2(1.70 g/cm3) | 总提取率: H2O:47.36% NaCl:89.93% NaBr:96.35% ZnCl2:95.87% 不同浮选液对低密度MPs呈现 良好的提取效果,而高密度 MPs需要选择密度更高的 浮选液进行提取 | [ |
PE | 饱和NaCl | 经过后续超声处理后, 最终MPs回收率可达92.9% | [ |
PS、PVC、PE和PET | 饱和NaCl+饱和NaI 不同比例混合 | 总提取率: 当两者比例为1∶1时, 提取效果超过90%, 之后略有升高但逐渐趋于稳定 | [ |
PE、PP、PS、PET、尼龙6 | 82% NaI+0.5%聚乙 烯吡咯烷酮(PVP) | 加入PVP可将不同粒径,特别 是小尺寸MPs的提取率从 60%~70%提高到90%以上 | [ |
PE、PP、PET等多种混合 | CaCl2(1.5 g/cm3) | 提取率达93%~98% | [ |
表1 常用密度浮选液及其效果
Table 1 Effect of common density flotation solution
MPs类型 | 浮选液 | 分离效果 | 参考文献 |
---|---|---|---|
PP,0.89~0.93 g/cm3 PE,0.91~0.94 g/cm3 PS,1.01~1.06 g/cm3 ABS,1.04~1.08 g/cm3 PC,1.18~1.22 g/cm3 PVC,1.16~1.35 g/cm3 PET,1.38~1.41 g/cm3 | 1. H2O(1.00 g/cm3) 2. NaCl(1.17 g/cm3) 3. NaBr(1.46 g/cm3) 4. ZnCl2(1.70 g/cm3) | 总提取率: H2O:47.36% NaCl:89.93% NaBr:96.35% ZnCl2:95.87% 不同浮选液对低密度MPs呈现 良好的提取效果,而高密度 MPs需要选择密度更高的 浮选液进行提取 | [ |
PE | 饱和NaCl | 经过后续超声处理后, 最终MPs回收率可达92.9% | [ |
PS、PVC、PE和PET | 饱和NaCl+饱和NaI 不同比例混合 | 总提取率: 当两者比例为1∶1时, 提取效果超过90%, 之后略有升高但逐渐趋于稳定 | [ |
PE、PP、PS、PET、尼龙6 | 82% NaI+0.5%聚乙 烯吡咯烷酮(PVP) | 加入PVP可将不同粒径,特别 是小尺寸MPs的提取率从 60%~70%提高到90%以上 | [ |
PE、PP、PET等多种混合 | CaCl2(1.5 g/cm3) | 提取率达93%~98% | [ |
MPs类型 | 消解液 | 消解效果 | 参考文献 |
---|---|---|---|
PE | 1. 30%H2O2 2. 5mol/L NaOH | H2O2:圆形MPs表面 有较少的土壤颗粒,回收率89.1%; NaOH:表面附着一部分土壤颗粒、 有机质等杂质,回收率90.7% | [ |
PVC、PET、PP等 | 1. 30%H2O2 2. 10%KOH 3. Fenton | 30%H2O2普适性较大,Fenton适合 在低有机质土壤使用,KOH效果一般 | [ |
PS、PE、PET等 | 混合溶液:15 mL HCl+5 mL HNO3+3 mL HF | 可将0.1 g土壤完全消解 并有效提取出多种微塑料 | [ |
PE、PP、PET等多种混合 | HNO3 | MPs回收率为93%~98% | [ |
表2 常用消解液消解效果
Table 2 The effect of the commonly used digesting solution
MPs类型 | 消解液 | 消解效果 | 参考文献 |
---|---|---|---|
PE | 1. 30%H2O2 2. 5mol/L NaOH | H2O2:圆形MPs表面 有较少的土壤颗粒,回收率89.1%; NaOH:表面附着一部分土壤颗粒、 有机质等杂质,回收率90.7% | [ |
PVC、PET、PP等 | 1. 30%H2O2 2. 10%KOH 3. Fenton | 30%H2O2普适性较大,Fenton适合 在低有机质土壤使用,KOH效果一般 | [ |
PS、PE、PET等 | 混合溶液:15 mL HCl+5 mL HNO3+3 mL HF | 可将0.1 g土壤完全消解 并有效提取出多种微塑料 | [ |
PE、PP、PET等多种混合 | HNO3 | MPs回收率为93%~98% | [ |
检测技术 | 方法仪器 | 所得信息 | 优缺点 |
---|---|---|---|
目检法 | 肉眼观察 | 尺寸、丰度 | 可识别1~5 mm大型MPs,对于尺寸微小塑料识别精度低 |
常规显微镜 | 尺寸、丰度 | 可识别尺寸>100 μm的MPs,经济、简单,但精度低,需辅以染色技术 | |
电子显微镜 | 尺寸、丰度 | 可识别尺寸<100 μm的MPs,检测精度更高,但耗时耗力,测样量少 | |
光谱法 | Raman | 尺寸、丰度、成分 | 适合识别尺寸>1 μm的MPs,成像快速、简便,分辨率高;不适用于检测含有荧光的样品,受有机质影响较大,需要提前对样品进行消解 |
FTIR | 尺寸、丰度、成分 | 适合识别尺寸>20 μm的MPs,分辨率高、扫描快、精确度高;对样品的颜色、尺寸和其中水分的干扰比较敏感,样品需要提前消解 | |
TOF-SIMS | 尺寸、成分、丰度 | 质谱多组分同时检测、样品前处理简单、抗干扰能力强 | |
LDIR | 尺寸、丰度、成分 | 适合尺寸>20 μm MPs的检测,准确度高,节省人力物力,有广阔的发展前景;光谱范围窄(975~1 800 cm-1) | |
THz | 预测MPs浓度 | 穿透性高、能量低、极性分子吸收性强、应用范围广;样品需要保持干燥,检测上下限待确定 | |
质谱法 | Py-GC/MS | 成分、质量 | 灵敏性高,可定性定量多种聚合物和添加剂;会受到操作温度和进样量的限制,对MPs具有破坏性 |
TED-GC/MS | 成分、质量 | 处理时间相对较短,处理样品量相对较大,但容易受到添加剂、有机物等的影响 | |
TGA-DSC | 成分、质量 | 适合含结晶结构的聚合物(如PS) | |
ICP | 尺寸、丰度、成分、质量浓度 | 适合检测尺寸为1~10 μm的MPs,适用于个人护理产品和食品包装材料释放的MPs的筛查 |
表3 土壤和植物MPs检测技术总结
Table 3 Summary of soil and plant MPs detection techniques
检测技术 | 方法仪器 | 所得信息 | 优缺点 |
---|---|---|---|
目检法 | 肉眼观察 | 尺寸、丰度 | 可识别1~5 mm大型MPs,对于尺寸微小塑料识别精度低 |
常规显微镜 | 尺寸、丰度 | 可识别尺寸>100 μm的MPs,经济、简单,但精度低,需辅以染色技术 | |
电子显微镜 | 尺寸、丰度 | 可识别尺寸<100 μm的MPs,检测精度更高,但耗时耗力,测样量少 | |
光谱法 | Raman | 尺寸、丰度、成分 | 适合识别尺寸>1 μm的MPs,成像快速、简便,分辨率高;不适用于检测含有荧光的样品,受有机质影响较大,需要提前对样品进行消解 |
FTIR | 尺寸、丰度、成分 | 适合识别尺寸>20 μm的MPs,分辨率高、扫描快、精确度高;对样品的颜色、尺寸和其中水分的干扰比较敏感,样品需要提前消解 | |
TOF-SIMS | 尺寸、成分、丰度 | 质谱多组分同时检测、样品前处理简单、抗干扰能力强 | |
LDIR | 尺寸、丰度、成分 | 适合尺寸>20 μm MPs的检测,准确度高,节省人力物力,有广阔的发展前景;光谱范围窄(975~1 800 cm-1) | |
THz | 预测MPs浓度 | 穿透性高、能量低、极性分子吸收性强、应用范围广;样品需要保持干燥,检测上下限待确定 | |
质谱法 | Py-GC/MS | 成分、质量 | 灵敏性高,可定性定量多种聚合物和添加剂;会受到操作温度和进样量的限制,对MPs具有破坏性 |
TED-GC/MS | 成分、质量 | 处理时间相对较短,处理样品量相对较大,但容易受到添加剂、有机物等的影响 | |
TGA-DSC | 成分、质量 | 适合含结晶结构的聚合物(如PS) | |
ICP | 尺寸、丰度、成分、质量浓度 | 适合检测尺寸为1~10 μm的MPs,适用于个人护理产品和食品包装材料释放的MPs的筛查 |
[1] | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
[2] | ZHAO J M, RAN W, TENG J, et al. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China[J]. Science of the Total Environment, 2018, 640: 637-645. |
[3] | LI B W, LIANG W, LIU Q X, et al. Fish ingest microplastics unintentionally[J]. Environmental Science and Technology, 2021, 55(15): 10471-10479. |
[4] | CHIA R W, LEE J Y, KIM H, et al. Microplastic pollution in soil and groundwater: a review[J]. Environmental Chemistry Letters, 2021, 19(6): 4211-4224. |
[5] | LI C J, GAO Y, HE S, et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry[J]. Environmental Science and Technology Letters, 2021, 8(8): 633-638. |
[6] | LESLIE H A, VAN VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199. |
[7] | 王金花, 李冰, 侯宇晴, 等. 农田土壤中微塑料的赋存、迁移及生态效应研究进展[J]. 农业环境科学学报, 2023, 42(5): 951-965, 946. |
[8] | HUANG B, SUN L Y, LIU M R, et al. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China[J]. Environmental Science and Pollution Research, 2021, 28(2): 1675-1688. |
[9] | DING L, ZHANG S Y, WANG X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 2020, 720: 137525. |
[10] | FENG S S, LU H W, TIAN P P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739: 140087. |
[11] | DAN Y B, ZHANG W L, XUE R M, et al. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis[J]. Environmental Science and Technology, 2015, 49(5): 3007-3014. |
[12] | QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645: 1048-1056. |
[13] | SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9): 755-760. |
[14] | ARTHUR C, BAKER J, BAMFORD H. Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris[C]. Washington: NOAA Marine Debris Division, 2009. |
[15] | HOOGENBOOM L A P. Presence of microplastics and nanoplastics in food, with particular focus on seafood[J]. EFSA Journal, 2016, 14(6): e04501. |
[16] | ZHOU Q, ZHANG H B, FU C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea[J]. Geoderma, 2018, 322: 201-208. |
[17] | HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. |
[18] | AL-JAIBACHI R, CUTHBERT R N, CALLAGHAN A. Examining effects of ontogenic microplastic transference on Culex mosquito mortality and adult weight[J]. Science of the Total Environment, 2019, 651: 871-876. |
[19] | YU M, VAN DER PLOEG M, LWANGA E H, et al. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows[J]. Environmental Chemistry, 2019, 16(1): 31. |
[20] | ZHU D, BI Q F, XIANG Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154. |
[21] | RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8: 1805. |
[22] | RAMOS L, BERENSTEIN G, HUGHES E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523: 74-81. |
[23] | LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science: Nano, 2018, 5(8): 2009-2020. |
[24] | ZHOU C Q, LU C H, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412. |
[25] | 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928-934. |
[26] | ZHU J H, WANG J, CHEN R N, et al. Cellular process of polystyrene nanoparticles entry into wheat roots[J]. Environmental Science and Technology, 2022, 56(10): 6436-6444. |
[27] | LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. |
[28] | BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics detected in sheep faeces and soil: a case study from the intensive vegetable farming in Southeast Spain[J]. Science of the Total Environment, 2021, 755(Pt 1): 142653. |
[29] | LWANGA E H, VEGA J M, QUEJ V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1): 14071. |
[30] | CHAE Y, AN Y J. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfereffects via vascular plants[J]. Environmental Science: Nano, 2020, 7(3): 975-983. |
[31] | SHRUTI V C, KUTRALAM-MUNIASAMY G. Bioplastics: missing link in the era of microplastics[J]. Science of the Total Environment, 2019, 697: 134139. |
[32] | DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science and Technology, 2019, 53(10): 6044-6052. |
[33] | WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654: 576-582. |
[34] | GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149: 170-177. |
[35] | LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385: 121620. |
[36] | IBRAHIM Y S, TUAN ANUAR S, AZMI A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open, 2021, 5(1): 116-121. |
[37] | SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool: a prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. |
[38] | DE-LA-TORRE G E. Microplastics: an emerging threat to food security and human health[J]. Journal of Food Science and Technology, 2020, 57(5): 1601-1608. |
[39] | ZURI G, KARANASIOU A, LACORTE S. Human biomonitoring of microplastics and health implications: a review[J]. Environmental Research, 2023, 237(Pt 1): 116966. |
[40] | YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: a review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780: 146546. |
[41] | DIOSES-SALINAS D C, PIZARRO-ORTEGA C I, DE-LA-TORRE G E. A methodological approach of the current literature on microplastic contamination in terrestrial environments: current knowledge and baseline considerations[J]. Science of the Total Environment, 2020, 730: 139164. |
[42] | HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science and Technology, 2012, 46(6): 3060-3075. |
[43] | ZHANG S L, YANG X M, GERTSEN H, et al. A simple method for the extraction and identification of light density microplastics from soil[J]. Science of the Total Environment, 2018, 616: 1056-1065. |
[44] | 左振江, 王菊, 王艳辉, 等. 基于密度浮选和油提取的土壤微塑料分离方法研究[J]. 中国环境科学, 2023, 43(11): 1-7. |
[45] | 白润昊, 崔吉晓, 范瑞琪, 等. 农田土壤地膜源微塑料分离检测方法优化[J]. 中国环境科学, 2023, 43(5): 2404-2412. |
[46] | 林婧, 李振国, 余光辉, 等. 密度分离法提取土壤中微塑料的优化[J]. 中国环境科学, 2022, 42(7): 3285-3294. |
[47] | KATSUMI N, NAGAO S, OKOCHI H. Addition of polyvinyl pyrrolidone during density separation with sodium iodide solution improves recovery rate of small microplastics (20-150 μm) from soils and sediments[J]. Chemosphere, 2022, 307(Pt 1): 135730. |
[48] | SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils[J]. Environmental Science and Technology, 2018, 52(6): 3591-3598. |
[49] | IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments[J]. Limnology and Oceanography: Methods, 2012, 10(7): 524-537. |
[50] | ZHANG Y S, WANG Q, YALIKUN N, et al. A comprehensive review of separation technologies for waste plastics in urban mine[J]. Resources, Conservation and Recycling, 2023, 197: 107087. |
[51] | FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science and Technology, 2016, 50(11): 5774-5780. |
[52] | FELSING S, KOCHLEUS C, BUCHINGER S, et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior[J]. Environmental Pollution, 2018, 234: 20-28. |
[53] | STUART J F F R, EULYN P, REZA K H, et al. Rapid extraction of high- and low-density microplastics from soil using high-gradient magnetic separation[J]. Science of the Total Environment, 2022, 831: 154912. |
[54] | RONG S S, CHENG X Y, CHEN Z N, et al. Detection technology and ecological effects of microplastics in soil[J]. Scientia Sinica Chimica, 2021, 51(9): 1217-1229. |
[55] | SCOPETANI C, CHELAZZI D, MIKOLA J, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples[J]. Science of the Total Environment, 2020, 733: 139338. |
[56] | CRICHTON E M, NOËL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9(9): 1419-1428. |
[57] | MANI T, FREHLAND S, KALBERER A, et al. Using castor oil to separate microplastics from four different environmental matrices[J]. Analytical Methods, 2019, 11(13): 1788-1794. |
[58] | LARES M, NCIBI M C, SILLANPÄÄ M, et al. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples[J]. Environmental Science and Pollution Research International, 2019, 26(12): 12109-12122. |
[59] | RADFORD F, ZAPATA-RESTREPO L M, HORTON A A, et al. Developing a systematic method for extraction of microplastics in soils[J]. Analytical Methods, 2021, 13(14): 1695-1705. |
[60] | 何欢, 殷婷, 黄斌, 等. 微波消解法提取定量复杂土壤介质中微塑料的方法[J]. 土木与环境工程学报(中英文), 2023, 45(3): 134-144. |
[61] | HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices[J]. Environmental Science and Technology, 2018, 52(13): 7409-7417. |
[62] | DUAN J H, HAN J, ZHOU H C, et al. Development of a digestion method for determining microplastic pollution in vegetal-rich clayey mangrove sediments[J]. Science of the Total Environment, 2020, 707: 136030. |
[63] | 凌小芳, 李铭, 吴宇. 环境中微塑料的分离及检测技术研究进展[J]. 四川化工, 2020, 23(5): 15-18. |
[64] | DONG H K, WANG X P, NIU X R, et al. Overview of analytical methods for the determination of microplastics: current status and trends[J]. Trends in Analytical Chemistry, 2023, 167: 117261. |
[65] | SHIM W J, HONG S H, EO S E. Identification methods in microplastic analysis: a review[J]. Analytical Methods, 2017, 9(9): 1384-1391. |
[66] | MÖLLER J N, LÖDER M G J, LAFORSCH C. Finding microplastics in soils: a review of analytical methods[J]. Environmental Science and Technology, 2020, 54(4): 2078-2090. |
[67] | MBACHU O, JENKINS G, KAPARAJU P, et al. The rise of artificial soil carbon inputs: reviewing microplastic pollution effects in the soil environment[J]. Science of the Total Environment, 2021, 780: 146569. |
[68] | 姜晓旭, 封雪, 周笑白, 等. 土壤中微塑料污染现状与检测技术研究进展[J]. 环境化学, 2023, 42(1): 163-175. |
[69] | 牟诗怡, 杨美慧, 陈钦清, 等. 太赫兹光谱技术对土壤污染物检测分析的研究[J]. 实验技术与管理, 2021, 38(4): 89-93. |
[70] | 查旭琼, 王娟, 郑阳, 等. 土壤微塑料的检测方法研究进展[J]. 山东化工, 2021, 50(13): 56-58. |
[71] | 杨海龙, 刘楠, 白保勋, 等. 农田土壤微塑料来源、分离及检测研究进展[J]. 河南化工, 2022, 39(12): 1-4. |
[72] | FISCHER M, SCHOLZ-BÖTTCHER B M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry[J]. Environmental Science and Technology, 2017, 51(9): 5052-5060. |
[73] | DÜMICHEN E, BARTHEL A K, BRAUN U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85: 451-457. |
[74] | DU C, WU J, GONG J, et al. ToF-SIMS characterization of microplastics in soils[J]. Surface and Interface Analysis, 2020, 52(5): 293-300. |
[75] | FENG J X, ZHAO H S, GONG X Y, et al. In situ identification and spatial mapping of microplastic standards in paramecia by secondary-ion mass spectrometry imaging[J]. Analytical Chemistry, 2021, 93(13): 5521-5528. |
[76] | BOLEA-FERNANDEZ E, RUA-IBARZ A, VELIMIROVIC M, et al. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(3): 455-460. |
[77] | JIA W Q, KARAPETROVA A, ZHANG M J, et al. Automated identification and quantification of invisible microplastics in agricultural soils[J]. Science of the Total Environment, 2022, 844: 156853. |
[78] | LI Y H, YAO J J, NIE P C, et al. An effective method for the rapid detection of microplastics in soil[J]. Chemosphere, 2021, 276: 128696. |
[79] | PAUL A, WANDER L, BECKER R, et al. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil[J]. Environmental Science and Pollution Research International, 2019, 26(8): 7364-7374. |
[80] | CORRADINI F, BARTHOLOMEUS H, HUERTA LWANGA E, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650: 922-932. |
[81] | SHAN J J, ZHAO J B, LIU L F, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238: 121-129. |
[82] | XU L J, CHEN Y J, FENG A, et al. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology[J]. Environmental Research, 2023, 232: 116389. |
[83] | LIU Y Y, GUO R, ZHANG S W, et al. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment[J]. Journal of Hazardous Materials, 2022, 421: 126700. |
[1] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[2] | 孙彩云, 郑冰清, 李俊, 符洪铭, 孙荣卿, 刘红豪, 廖祖莹, 江红生, 吴振斌, 夏世斌, 王培. 沉水植物对岩溶碳汇稳定性影响研究[J]. 地学前缘, 2024, 31(5): 430-439. |
[3] | 王汉雨, 周永章, 许娅婷, 王维曦, 曹伟, 刘永强, 贺炬翔, 陆可飞. 基于微服务架构的城市土壤污染物联网监测及可视化系统研发[J]. 地学前缘, 2024, 31(4): 165-182. |
[4] | 张舜尧, 施泽明, 杨志斌, 周亚龙, 张富贵, 彭敏. 冻土区土壤甲烷排放的研究进展及发展趋势[J]. 地学前缘, 2024, 31(4): 354-365. |
[5] | 杨峥, 彭敏, 赵传冬, 杨柯, 刘飞, 李括, 周亚龙, 唐世琪, 马宏宏, 张青, 成杭新. 中国土壤54项指标的地球化学背景与基准研究[J]. 地学前缘, 2024, 31(4): 380-402. |
[6] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[7] | 李杉杉, 张荣, 费杨, 梁家辉, 杨兵, 王萌, 师华定, 陈世宝. Fe对稻田土壤重金属迁移转化影响机制及研究进展[J]. 地学前缘, 2024, 31(2): 103-110. |
[8] | 俞磊, 孙晓艺, 秦璐瑶, 王静, 王萌, 陈世宝. 基于作物Cd富集系数的土壤有效态Cd化学浸提方法筛选[J]. 地学前缘, 2024, 31(2): 111-120. |
[9] | 丁昌峰, 周志高, 王玉荣, 张桃林, 王兴祥. 基于生态安全的我国土壤镉环境基准研究[J]. 地学前缘, 2024, 31(2): 130-136. |
[10] | 张竞元, 王学东, 梁力川, 段桂兰. 我国典型土壤中Co对生物的毒害及其阈值推导[J]. 地学前缘, 2024, 31(2): 137-146. |
[11] | 王萌, 俞磊, 秦璐瑶, 孙晓艺, 王静, 刘佳晓, 陈世宝. 土壤环境基准的科学问题与研究方法:以Cd为例[J]. 地学前缘, 2024, 31(2): 147-156. |
[12] | 雷鸣, 周一敏, 黄大睿, 黄雅媛, 王薪琪, 李冰玉, 杜辉辉, 刘孝利, 铁柏清. 湖南耕地土壤和稻米重金属污染防控实践与思考[J]. 地学前缘, 2024, 31(2): 173-182. |
[13] | 刘永兵, 宿俊杰, 郭威, 王英男, 殷亚秋. 冀北花岗岩地区坡积-冲洪积型污染耕地土壤治理比较研究[J]. 地学前缘, 2024, 31(2): 196-203. |
[14] | 丁祥, 袁贝, 杜平, 刘虎鹏, 张云慧, 陈娟. 典型矿冶城市土壤重金属累积驱动因子研究和概率风险评估[J]. 地学前缘, 2024, 31(2): 31-41. |
[15] | 刘奇鑫, 顾行发, 王春梅, 杨健, 占玉林. 不同尺度的土壤含水量主被动微波联合反演方法研究[J]. 地学前缘, 2024, 31(2): 42-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||