地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 354-365.DOI: 10.13745/j.esf.sf.2023.5.29
张舜尧1,2,3(), 施泽明3, 杨志斌1, 周亚龙1,2, 张富贵1,2, 彭敏1,2
收稿日期:
2023-04-11
修回日期:
2023-05-05
出版日期:
2024-07-25
发布日期:
2024-07-10
作者简介:
张舜尧(1986—),男,博士,高级工程师,主要从事生态地球化学、地表碳循环系统研究工作。E-mail: benzhang86@hotmail.com
基金资助:
ZHANG Shunyao1,2,3(), SHI Zeming3, YANG Zhibin1, ZHOU Yalong1,2, ZHANG Fugui1,2, PENG Min1,2
Received:
2023-04-11
Revised:
2023-05-05
Online:
2024-07-25
Published:
2024-07-10
摘要:
作为全球碳循环系统及陆地生态系统的重要组成部分,冻土区土壤甲烷排放在土壤碳库与气候变化之间的反馈联动机制中扮演着关键性角色,并因此成为全球气候变化研究中的前沿热点问题。冻土区土壤甲烷排放的气源主要为微生物产甲烷活动和冻土层、天然气水合物中的气体释放作用,其中,微生物气源的研究较为成熟,而冻土层和天然气水合物气源甲烷的排放研究目前尚停留在定性分析阶段。在影响因子方面,文献计量学统计结果中出现频次最多的关键词依次为土壤温度、湿度和水位条件、有机质含量、地表植被条件等,这些要素可以对甲烷产生、传输和氧化吸收等多个环节产生影响。模型计算法是当前冻土区土壤甲烷排放评估预测的主要方法,包括早期的统计计算模型和近年来出现的基于土壤甲烷排放成因机理的过程模型,相关计算结果有效地支撑了全球气候变化评估研究。通过对冻土区土壤甲烷排放研究成果的梳理和总结,发现当前对冻土区土壤甲烷排放的气源和单因子影响作用认识较为明确,不同尺度的监测和评估方法也较为成熟。但是,对多气源作用下的冻土区土壤甲烷复合排放研究仍然较为薄弱,尤其是在冻土层和天然气水合物的甲烷释放方面,还缺少相关的定量计算研究。与此同时,在影响因子研究方面,也缺少多因素作用下的成因机理和驱动机制分析。因此,可以通过多方法、多因素综合监测研究,利用产甲烷微生物的元基因组分析、多气源土壤甲烷排放的同位素示踪等新技术和新方法,结合卫星遥感等大尺度观测结果,完善冻土区土壤甲烷排放的过程模型。此外,作为全球的“第三极”,青藏高原区域碳循环系统的变化将对亚洲,乃至全球气候变化产生重大影响。因此,还应进一步加强对青藏高原中纬度高原冻土区土壤甲烷排放的相关研究,为区域碳排放的定量评估和全球气候变化的研究提供理论支撑。
中图分类号:
张舜尧, 施泽明, 杨志斌, 周亚龙, 张富贵, 彭敏. 冻土区土壤甲烷排放的研究进展及发展趋势[J]. 地学前缘, 2024, 31(4): 354-365.
ZHANG Shunyao, SHI Zeming, YANG Zhibin, ZHOU Yalong, ZHANG Fugui, PENG Min. Advances and trends on soil methane emission in permafrost region[J]. Earth Science Frontiers, 2024, 31(4): 354-365.
图1 北半球地表温度及冻土区分布图(温度数据引自文献[13])
Fig.1 Map of surface temperature and permafrost distribution in the Northern Hemisphere. Temperature data adapted from [13].
图2 冻土区土壤甲烷排放研究的发文量(a)和被引频次(b)增长趋势 数据来源于Web of Science核心数据库,检索范围为1995—2023年,截止日期为2023年4月28日,检索式为:“TS=Permafrost OR Tundra) AND TS=(Soil) AND TS=(Methane) AND TS=(Emission*)”。
Fig.2 Trend of the number of publications and cited frequency of papers on soil methane emission in permafrost region
序号 | 影响因子 | 文献数 | 关键词 | 出现时间 |
---|---|---|---|---|
1 | 土壤温度 | 126 | temperature sensitivity;temperature dependence | 1998 |
2 | 湿度、水位条件 | 56 | water table;moisture | 1998 |
3 | 地表植物 | 89 | vegetation;vascular plants | 1999 |
4 | 有机质含量 | 101 | organic matter;dissolved organic matter;organic carbon | 2009 |
5 | 其他 | permafrost thaw;nitrogen;landscape;soil texture;land-use | 2014—2017 |
表1 冻土区土壤甲烷排放影响因子关键词分布
Table 1 Keywords distribution of influencing factors of soil methane emission in permafrost region
序号 | 影响因子 | 文献数 | 关键词 | 出现时间 |
---|---|---|---|---|
1 | 土壤温度 | 126 | temperature sensitivity;temperature dependence | 1998 |
2 | 湿度、水位条件 | 56 | water table;moisture | 1998 |
3 | 地表植物 | 89 | vegetation;vascular plants | 1999 |
4 | 有机质含量 | 101 | organic matter;dissolved organic matter;organic carbon | 2009 |
5 | 其他 | permafrost thaw;nitrogen;landscape;soil texture;land-use | 2014—2017 |
[84] |
李超男, 李家宝, 李香真. 贡嘎山海拔梯度上不同植被类型土壤甲烷氧化菌群落结构及多样性[J]. 应用生态学报, 2017, 28(3): 805-814.
DOI |
[85] | 焦燕, 侯建华, 赵江红, 等. 内蒙古农牧交错带土地利用变化对CH4吸收的影响[J]. 中国环境科学, 2014, 34(6): 1514-1522. |
[86] | BUBIER J L, MOORE T R, BELLISARIO L, et al. Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada[J]. Global Biogeochemical Cycles, 1995, 9(4): 455-470. |
[87] | LAI D Y F, ROULET N T, HUMPHREYS E R, et al. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland[J]. Biogeosciences, 2012, 9(8): 3305-3322. |
[88] | JACKOWICZ-KORCZYSKI M, CHRISTENSEN T, BÄCKSTRAND K, et al. Annual cycle of methane emission from a subarctic peatland[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(2): G000913. |
[89] | BALDOCCHI D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future[J]. Global Change Biology, 2003, 9(4): 479-492. |
[90] | SACHS T, GIEBELS M, BOIKE J, et al. Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena River delta, Siberia[J]. Global Change Biology, 2010, 16(11): 3096-3110. |
[91] | WANG K F, PENG C H, ZHU Q A, et al. Changes in soil organic carbon and microbial carbon storage projected during the 21st century using TRIPLEX-MICROBE[J]. Ecological Indicators, 2019, 98: 80-87. |
[92] | SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1561-1623. |
[93] | CHRISTENSEN T R, JONASSON S, CALLAGHAN T V, et al. Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D10): 21035-21045. |
[94] | CAO M K, MARSHALL S, GREGSON K. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D9): 14399-14414. |
[1] | World Meteorological Organization. Provisional state of the global climate in 2022[R]. Sharm El Sheikh: World Meteorological Organization, 2022. |
[2] | WATTS N, AMANN M, ARNELL N, et al. The 2020 report of the lancet countdown on health and climate change: responding to converging crises[J]. The Lancet, 2021, 397(10269): 129-170. |
[3] |
陈雪倩, 张立飞. 碳的固定、 运输、 转移和排放过程: 对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339.
DOI |
[4] | SCHUUR E A G, MCGUIRE A D, SCHÄDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171-179. |
[5] | SCHUUR E A G, BOCKHEIM J, CANADELL J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. BioScience, 2008, 58(8): 701-714. |
[6] | CROWTHER T W, TODD-BROWN K E O, ROWE C W, et al. Quantifying global soil carbon losses in response to warming[J]. Nature, 2016, 540(7631): 104-108. |
[7] | ANDERSON B, BARTLETT K, FROLKING S, et al. Methane and nitrous oxide emissions from natural sources[R]. Washington DC: Office of Atmospheric Programs, US EPA, 2010. |
[8] | COOPER M D A, ESTOP-ARAGONÉS C, FISHER J P, et al. Limited contribution of permafrost carbon to methane release from thawing peatlands[J]. Nature Climate Change, 2017, 7: 507-511. |
[9] | ANISIMOV O, ZIMOV S. Thawing permafrost and methane emission in Siberia: synthesis of observations, reanalysis, and predictive modeling[J]. Ambio, 2021, 50(11): 2050-2059. |
[10] | TURETSKY M R, ABBOTT B W, JONES M C, et al. Carbon release through abrupt permafrost thaw[J]. Nature Geoscience, 2020, 13: 138-143. |
[11] | NORRIS R D, RÖHL U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition[J]. Nature, 1999, 401: 775-778. |
[12] | HESSELBO S P, GRÖCKE D R, JENKYNS H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395. |
[13] | OBU J, WESTERMANN S, BARTSCH A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale[J]. Earth-Science Reviews, 2019, 193: 299-316. |
[14] | CLYMO R S. The limits to peat bog growth[J]. Philosophical Transactions of the Royal Society of London, 1984, 303: 605-654. |
[15] | MCGUIRE A D, CHRISTENSEN T R, HAYES D, et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions[J]. Biogeosciences, 2012, 9(8): 3185-3204. |
[16] | LE MER J, ROGER P. Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology, 2001, 37(1): 25-50. |
[17] | LAI D Y F. Methane dynamics in northern peatlands: a review[J]. Pedosphere, 2009, 19(4): 409-421. |
[18] | 陈哲. 季节性冻土区生态系统土壤温室气体排放研究[D]. 北京: 中国农业科学院, 2016. |
[19] | CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[M]//EDENHOFER O, PICHS-MADRUGA R, SOKONA Y, et al. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014. |
[20] | LUO M, HUANG H G, ZHANG P, et al. Origins of gas discharging from the Qiangtang Basin in the northern Qinghai-Tibet Plateau, China: evidence from gas compositions, helium, and carbon isotopes[J]. Journal of Geochemical Exploration, 2014, 146: 119-126. |
[21] |
KOHNERT K, SERAFIMOVICH A, METZGER S, et al. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada[J]. Scientific Reports, 2017, 7(1): 5828.
DOI PMID |
[22] |
KUHN M, LUNDIN E J, GIESLER R, et al. Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands[J]. Scientific Reports, 2018, 8(1): 9535.
DOI PMID |
[95] | WALTER B P, HEIMANN M. A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate[J]. Global Biogeochemical Cycles, 2000, 14(3): 745-765. |
[96] | ZHUANG Q, MELILLO J M, KICKLIGHTER D W, et al. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model[J]. Global Biogeochemical Cycles, 2004, 18: GB3010. |
[97] | MCGUIRE A D, HAYES D J, KICKLIGHTER D W, et al. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(5): 455-474. |
[98] | ZHANG Y, SACHS T, LI C S, et al. Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model[J]. Global Change Biology, 2012, 18(4): 1428-1440. |
[99] | 冯冬霞, 高晓清, 周亚, 等. 青藏高原大气甲烷浓度时空分布变化特征[J]. 气候与环境研究, 2017, 22(3): 346-354. |
[100] |
谢立军, 白中科, 杨博宇, 等. 碳中和背景下国内外陆地生态系统碳汇评估方法研究进展[J]. 地学前缘, 2023, 30(2): 447-462.
DOI |
[23] | 李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展[J]. 海洋环境科学, 2020, 39(3): 488-496. |
[24] | 丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1672-1679. |
[25] | JOABSSON A, CHRISTENSEN T R. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example[J]. Global Change Biology, 2001, 7(8): 919-932. |
[26] | TURETSKY M R, TREAT C C, WALDROP M P, et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G3): G00A10. |
[27] |
ANDRESEN C G, LARA M J, TWEEDIE C E, et al. Rising plant-mediated methane emissions from Arctic wetlands[J]. Global Change Biology, 2017, 23(3): 1128-1139.
DOI PMID |
[28] | PERRYMAN C R, MCCALLEY C K, MALHOTRA A, et al. Thaw transitions and redox conditions drive methane oxidation in a permafrost peatland[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(3): G005526. |
[29] | BARTLETT K B, HARRISS R C. Review and assessment of methane emissions from wetlands[J]. Chemosphere, 1993, 26(1/2/3/4): 261-320. |
[30] | WILLE C, KUTZBACH L, SACHS T, et al. Methane emission from Siberian Arctic polygonal tundra: eddy covariance measurements and modeling[J]. Global Change Biology, 2008, 14(6): 1395-1408. |
[31] | VOIGT C, LAMPRECHT R E, MARUSHCHAK M E, et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases-carbon dioxide, methane, and nitrous oxide[J]. Global Change Biology, 2017, 23(8): 3121-3138. |
[32] | TAYLOR M A, CELIS G, LEDMAN J D, et al. Experimental soil warming and permafrost thaw increase CH4 emissions in an upland tundra ecosystem[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): G006376. |
[33] | THAUER R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture[J]. Microbiology, 1998, 144 (Pt 9): 2377-2406. |
[34] | CONRAD R. Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96: 1-63. |
[35] | WOODCROFT B J, SINGLETON C M, BOYD J A, et al. Genome-centric view of carbon processing in thawing permafrost[J]. Nature, 2018, 560(7716): 49-54. |
[36] | MASTEPANOV M, SIGSGAARD C, DLUGOKENCKY E J, et al. Large tundra methane burst during onset of freezing[J]. Nature, 2008, 456: 628-630. |
[37] | MASTEPANOV M, SIGSGAARD C, TAGESSON T, et al. Revisiting factors controlling methane emissions from high-Arctic tundra[J]. Biogeosciences, 2013, 10(7): 5139-5158. |
[38] | WALTER K M, ZIMOV S A, CHANTON J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006, 443(7107): 71-75. |
[39] |
OLEFELDT D, TURETSKY M R, CRILL P M, et al. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones[J]. Global Change Biology, 2013, 19(2): 589-603.
DOI PMID |
[40] | MCCALLEY C K, WOODCROFT B J, HODGKINS S B, et al. Methane dynamics regulated by microbial community response to permafrost thaw[J]. Nature, 2014, 514(7523): 478-481. |
[41] | JORGENSON M T, OSTERKAMP T E. Response of boreal ecosystems to varying modes of permafrost degradation[J]. Canadian Journal of Forest Research, 2005, 35(9): 2100-2111. |
[42] | WINKEL M, SEPULVEDA-JAUREGUI A, MARTINEZ-CRUZ K, et al. First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes[J]. Environmental Research Communications, 2019, 1(2): 021002. |
[43] | SCHUUR E A G, VOGEL J G, CRUMMER K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459: 556-559. |
[44] | WALDROP M P, WICKLAND K P, WHITE R, et al. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils[J]. Global Change Biology, 2010, 16(9): 2543-2554. |
[45] | TREAT C C, NATALI S M, ERNAKOVICH J, et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations[J]. Global Change Biology, 2015, 21(7): 2787-2803. |
[46] | HOGAN. Current and future methane emissions from natural sources[R]. Washington DC: USEPA Office of Air and Radiation, 1993. |
[47] | RUPPEL C. Permafrost-associated gas hydrate: is it really approximately 1% of the global system?[J]. Journal of Chemical and Engineering Data, 2015, 60(2): 429-436. |
[48] | SUN Z J, YANG Z B, MEI H, et al. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China[J]. Journal of Geochemical Exploration, 2014, 139: 160-169. |
[49] |
ZHANG S Y, ZHANG F G, SHI Z M, et al. Sources of seasonal wetland methane emissions in permafrost regions of the Qinghai-Tibet Plateau[J]. Scientific Reports, 2020, 10(1): 7520.
DOI PMID |
[50] |
戴金星, 倪云燕, 黄士鹏, 等. 中国天然气水合物气的成因类型[J]. 石油勘探与开发, 2017, 44(6): 837-848.
DOI |
[51] | Intergovernmental Panel on Climate Change. Climate change 2001:the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2001. |
[52] | NEGANDHI K, LAURION I, LOVEJOY C. Temperature effects on net greenhouse gas production and bacterial communities in Arctic thaw ponds[J]. FEMS Microbiology Ecology, 2016, 92(8): fiw117. |
[53] | LU Y, FU L, LU Y H, et al. Effect of temperature on the structure and activity of a methanogenic archaeal community during rice straw decomposition[J]. Soil Biology and Biochemistry, 2015, 81: 17-27. |
[54] | 丁维新, 蔡祖聪. 温度对甲烷产生和氧化的影响[J]. 应用生态学报, 2003, 14(4): 604-608. |
[55] | HODGKINS S B, TFAILY M M, MCCALLEY C K, et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2014, 111(16): 5819-5824. |
[56] | CHANG K Y, RILEY W J, CRILL P M, et al. Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden[J]. The Cryosphere, 2019, 13(2): 647-663. |
[57] | DUNFIELD P, KNOWLES R, DUMONT R, et al. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH[J]. Soil Biology and Biochemistry, 1993, 25(3): 321-326. |
[58] | 王家骐. 甲烷氧化微生物生态位分异环境驱动机制研究[D]. 杭州: 浙江大学, 2020. |
[59] | CASTRO M S, STEUDLER P A, MELILLO J M, et al. Factors controlling atmospheric methane consumption by temperate forest soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 1-10. |
[60] | 吴祥文. 大兴安岭多年冻土区不同林型土壤主要温室气体通量特征及气候变化的响应[D]. 哈尔滨: 哈尔滨师范大学, 2021. |
[61] | 陈祚伶. 古新世—始新世极热事件碳循环研究进展[J]. 科学通报, 2022, 67(15): 1704-1714. |
[62] | KURTZ A C, KUMP L R, ARTHUR M A, et al. Early Cenozoic decoupling of the global carbon and sulfur cycles[J]. Paleoceanography, 2003, 18(4): 1090. |
[63] | BRIDGHAM S D, PASTOR J, UPDEGRAFF K, et al. Ecosystem control over temperature and energy flux in northern peatlands[J]. Ecological Applications, 1999, 9(4): 1345-1358. |
[64] | ZHU R B, LIU Y S, SUN L G, et al. Methane emissions from two tundra wetlands in eastern Antarctica[J]. Atmospheric Environment, 2007, 41(22): 4711-4722. |
[65] | WANG F L, BETTANY J R. Methane emission from a usually well-drained prairie soil after snowmelt and precipitation[J]. Canadian Journal of Soil Science, 1995, 75(2): 239-241. |
[66] | KLUDZE H K. Gaseous exchange and wetland plant response to soil redox conditions[D]. Baton Rouge: Louisiana State University, 1994. |
[67] | 徐华, 蔡祖聪, 李小平. 土壤 Eh 和温度对稻田甲烷排放季节变化的影响[J]. 农业环境保护, 1999, 18(4): 145-149. |
[68] | WHALEN S C. Biogeochemistry of methane exchange between natural wetlands and the atmosphere[J]. Environmental Engineering Science, 2005, 22(1): 73-94. |
[69] | KELLEY C A, MARTENS C S, USSLER WIII. Methane dynamics across a tidally flooded riverbank margin[J]. Limnology and Oceanography, 1995, 40(6): 1112-1129. |
[70] | SCHIMEL J P. Plant transport and methane production as controls on methane flux from Arctic wet meadow tundra[J]. Biogeochemistry, 1995, 28(3): 183-200. |
[71] | JOABSSON A, CHRISTENSEN T R, WALLÉN B. Vascular plant controls on methane emissions from northern peatforming wetlands[J]. Trends in Ecology and Evolution, 1999, 14(10): 385-388. |
[72] | STRÖM L, EKBERG A, MASTEPANOV M, et al. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland[J]. Global Change Biology, 2003, 9(8): 1185-1192. |
[73] | SEPULVEDA-JAUREGUI A, WALTER ANTHONY K M, MARTINEZ-CRUZ K, et al. Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska[J]. Biogeosciences, 2015, 12(11): 3197-3223. |
[74] | STRÖM L, FALK J M, SKOV K, et al. Controls of spatial and temporal variability in CH4 flux in a high Arctic Fen over three years[J]. Biogeochemistry, 2015, 125(1): 21-35. |
[75] | FRENZEL P, RUDOLPH J. Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum[J]. Plant and Soil, 1998, 202(1): 27-32. |
[76] | KNOBLAUCH C, SPOTT O, EVGRAFOVA S, et al. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(12): 2525-2541. |
[77] | 杨文燕, 宋长春, 张金波. 沼泽湿地孔隙水中溶解有机碳、 氮浓度季节动态及与甲烷排放的关系[J]. 环境科学学报, 2006, 26(10): 1745-1750. |
[78] |
ZONA D, GIOLI B, COMMANE R, et al. Cold season emissions dominate the Arctic tundra methane budget[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 40-45.
DOI PMID |
[79] | ERNAKOVICH J G, LYNCH L M, BREWER P E, et al. Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost[J]. Biogeochemistry, 2017, 134(1): 183-200. |
[80] | BRODYLO D, JORGENSON M T. Linking repeat lidar with Landsat products for large scale quantification of fire-induced permafrost thaw settlement in interior Alaska[J]. Environmental Research Letters, 2023, 18(1): 015003. |
[81] |
BARRET M, GANDOIS L, THALASSO F, et al. A combined microbial and biogeochemical dataset from high-latitude ecosystems with respect to methane cycle[J]. Scientific Data, 2022, 9(1): 674.
DOI PMID |
[82] | 丁维新, 蔡祖聪. 氮肥对土壤甲烷产生的影响[J]. 农业环境科学学报, 2003, 22(3): 380-383. |
[83] | ZOLKOS S, TANK S E, KOKELJ S V, et al. Permafrost landscape history shapes fluvial chemistry, ecosystem carbon balance, and potential trajectories of future change[J]. Global Biogeochemical Cycles, 2022, 36(9): e2022GB007403. |
[1] | 张金川, 王香增, 李中明, 刘树根, 牛嘉亮, 袁天姝, 李兴起, 唐玄. 页岩含气量现场测试技术进展与发展趋势[J]. 地学前缘, 2024, 31(1): 315-326. |
[2] | 李德生, 李伯华. “双碳”背景下石油地质学的理论创新与迈向能源发展多元化新时代[J]. 地学前缘, 2022, 29(6): 1-9. |
[3] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[4] | 张小林, 苏培东, 苏少凡, 马云长, 杨枫. 龙泉山构造区隧道浅层天然气来源定量研究[J]. 地学前缘, 2020, 27(3): 262-268. |
[5] | 张彬,徐能雄,戴春森. 国际城市地下空间开发利用现状、趋势与启示 [J]. 地学前缘, 2019, 26(3): 48-56. |
[6] | 程光华,王睿,赵牧华,苏晶文,杨洋,张晓波. 国内城市地下空间开发利用现状与发展趋势[J]. 地学前缘, 2019, 26(3): 39-47. |
[7] | 刘圣乾,刘晖,姜在兴,夏中源,庞守吉,马文贤. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253. |
[8] | 郑水林, 孙志明, 胡志波, 张广心. 中国硅藻土资源及加工利用现状与发展趋势[J]. 地学前缘, 2014, 21(5): 274-280. |
[9] | 马利民 唐燕萍 滕衍行 赵建夫. 三峡库区消落区土壤磷释放的环境影响因子[J]. 地学前缘, 2008, 15(5): 235-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||