地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 354-365.DOI: 10.13745/j.esf.sf.2023.5.29

• 非主题来稿选登:土壤质量与环境效应 • 上一篇    下一篇

冻土区土壤甲烷排放的研究进展及发展趋势

张舜尧1,2,3(), 施泽明3, 杨志斌1, 周亚龙1,2, 张富贵1,2, 彭敏1,2   

  1. 1.中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
    2.中国地质科学院 地球表层碳-汞地球化学循环重点实验室, 河北 廊坊 065000
    3.成都理工大学 地球与行星科学学院, 四川 成都 610059
  • 收稿日期:2023-04-11 修回日期:2023-05-05 出版日期:2024-07-25 发布日期:2024-07-10
  • 作者简介:张舜尧(1986—),男,博士,高级工程师,主要从事生态地球化学、地表碳循环系统研究工作。E-mail: benzhang86@hotmail.com
  • 基金资助:
    中国地质调查局地质调查项目(DD20179192);中国地质调查局地质调查项目(DD20221770)

Advances and trends on soil methane emission in permafrost region

ZHANG Shunyao1,2,3(), SHI Zeming3, YANG Zhibin1, ZHOU Yalong1,2, ZHANG Fugui1,2, PENG Min1,2   

  1. 1. Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
    2. Key Laboratory of Ceochemical Cycling of Carbon and Mercury in the Earth’s Critical Zone, Chinese Academy of Geological Sciences, Langfang 065000, China
    3. College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China
  • Received:2023-04-11 Revised:2023-05-05 Online:2024-07-25 Published:2024-07-10

摘要:

作为全球碳循环系统及陆地生态系统的重要组成部分,冻土区土壤甲烷排放在土壤碳库与气候变化之间的反馈联动机制中扮演着关键性角色,并因此成为全球气候变化研究中的前沿热点问题。冻土区土壤甲烷排放的气源主要为微生物产甲烷活动和冻土层、天然气水合物中的气体释放作用,其中,微生物气源的研究较为成熟,而冻土层和天然气水合物气源甲烷的排放研究目前尚停留在定性分析阶段。在影响因子方面,文献计量学统计结果中出现频次最多的关键词依次为土壤温度、湿度和水位条件、有机质含量、地表植被条件等,这些要素可以对甲烷产生、传输和氧化吸收等多个环节产生影响。模型计算法是当前冻土区土壤甲烷排放评估预测的主要方法,包括早期的统计计算模型和近年来出现的基于土壤甲烷排放成因机理的过程模型,相关计算结果有效地支撑了全球气候变化评估研究。通过对冻土区土壤甲烷排放研究成果的梳理和总结,发现当前对冻土区土壤甲烷排放的气源和单因子影响作用认识较为明确,不同尺度的监测和评估方法也较为成熟。但是,对多气源作用下的冻土区土壤甲烷复合排放研究仍然较为薄弱,尤其是在冻土层和天然气水合物的甲烷释放方面,还缺少相关的定量计算研究。与此同时,在影响因子研究方面,也缺少多因素作用下的成因机理和驱动机制分析。因此,可以通过多方法、多因素综合监测研究,利用产甲烷微生物的元基因组分析、多气源土壤甲烷排放的同位素示踪等新技术和新方法,结合卫星遥感等大尺度观测结果,完善冻土区土壤甲烷排放的过程模型。此外,作为全球的“第三极”,青藏高原区域碳循环系统的变化将对亚洲,乃至全球气候变化产生重大影响。因此,还应进一步加强对青藏高原中纬度高原冻土区土壤甲烷排放的相关研究,为区域碳排放的定量评估和全球气候变化的研究提供理论支撑。

关键词: 冻土区, 土壤甲烷排放, 气源, 影响因子, 监测方法, 发展趋势

Abstract:

Soil methane emissions in permafrost regions are integral components of the global carbon cycle and terrestrial ecosystem, playing a pivotal role in the feedback mechanism of carbon sink on climate change, thus warranting focused research in the domain of global climate change. The origins of soil methane emissions in permafrost regions primarily stem from microbial methane production and gas release from frozen soil layers and natural gas hydrates. While research on microbial gas sources is relatively advanced, investigations into methane emissions from frozen soil layers and natural gas hydrate gas sources are still in the qualitative analysis stage. Influential factors such as soil temperature, moisture, water table conditions, organic matter content, surface vegetation conditions, and others can significantly influence various stages of methane production, transport, and oxidation. Modeling stands as the primary approach for evaluating and forecasting soil methane emissions in permafrost regions, encompassing both early statistical models and more recent process models based on the mechanisms of methane emission from soil. Although the synthesis of research on methane emissions from permafrost soils has yielded insights into gas sources and single-factor effects, there remain gaps in the study of multi-source methane emission, particularly concerning methane release from permafrost soil and gas hydrates. Furthermore, the analysis of causal mechanisms and driving forces under multiple factors is lacking in the investigation of influential factors. Comprehensive monitoring research employing diverse methods and factors, such as metagenomic analysis of methane-producing microorganisms and isotope tracing of multi-gas source soil methane emissions, can be integrated with satellite remote sensing and other large-scale observation results to refine process models of methane emissions from permafrost soils. Given that changes in the carbon cycling system of the Qinghai-Tibet Plateau, revered as the “Third Pole” of the world, will exert significant impacts on climate change in Asia and globally, further exploration of soil methane emissions on the Qinghai-Tibet Plateau is imperative to facilitate the quantitative assessment of regional carbon emissions and advance global climate change research.

Key words: permafrost region, soil methane emission, methane source, influence factor, monitoring method, development trend

中图分类号: