地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 384-399.DOI: 10.13745/j.esf.sf.2024.1.24
收稿日期:
2023-12-12
修回日期:
2024-01-05
出版日期:
2024-01-25
发布日期:
2024-01-25
作者简介:
郭华明(1975—),男,教授,博士生导师,从事水文地质学方面的教学与科研工作。E-mail: hmguo@cugb.edu.cn
基金资助:
GUO Huaming1,2(), YIN Jiahong2, YAN Song2, LIU Chao2
Received:
2023-12-12
Revised:
2024-01-05
Online:
2024-01-25
Published:
2024-01-25
摘要:
天然高铬地下水通常含有较高浓度的硝酸根,然而高铬地下水中硝酸根来源及其联系却并不清楚。本文以陕北黄土高原靖边西南地区的高铬地下水为研究对象,采集了不同深度的地下水和沉积物样品,并测试了地下水样品中的溶解Cr、主要阴阳离子、δ18O、δD、δ18O-NO3、δ15N-NO3等以及沉积物的主要组分和可溶性组分。研究结果表明,研究区地下水的水化学组分主要受水文地质条件的影响。第四系黄土潜水水化学类型主要为HCO3-Na型和HCO3-Ca-Mg型;白垩系环河组、洛河组砂岩承压水水化学类型复杂,主要为HCO3-SO4-Cl-Na-Mg型、HCO3-SO4-Na-Mg型、SO4-Cl-Na-Mg型,地下水处于偏碱性、氧化的环境,具有较高的可溶盐含量。潜水的水化学组分主要来自含水层中硅酸盐风化;承压水水化学组分主要来源于蒸发盐的溶解。垂向上,承压水中硝酸根的平均浓度高于潜水和地表水;地下水硝酸根浓度超标率在研究区从东北到西南呈现高-低-高的趋势;沉积物中可溶性硝酸根与地下水样品在深度上具有相似的变化规律,表明地下水硝酸根主要来源于沉积物。δ18O-NO3和δ15N-NO3结果表明,硝化反应是研究区氮素循环转化的主要过程。在偏碱性氧化性地下水环境中,受溶解氧、硝酸根和硝化反应等多种因素的共同作用,铬趋于从岩石中氧化溶解,迁移进入地下水中。
中图分类号:
郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399.
GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi[J]. Earth Science Frontiers, 2024, 31(1): 384-399.
图2 研究区Piper三线图
Fig.2 Piper diagram of studied water samples. Blue dots: unconfined groundwater; red dots: confined ground water; green dots: surface water.
样品 类型 | 统计 指标 | pH | Eh/ mV | DO/ (mg·L-1) | TDS/ (mg·L-1) | ρA/(mg·L-1) | ρB/(μg·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | Cl- | N | Cr | Mn | Fe | |||||||||||||
潜水 | 平均值 | 7.77 | 332 | 3.20 | 625 | 0.03 | 0.10 | 33.1 | 56.7 | 132 | 4.34 | 68.8 | 144 | 0.55 | 367 | 20.0 | 54.2 | 8.43 | 13.0 | ||
中值 | 7.82 | 335 | 3.41 | 479 | 0.01 | bdl | 25.8 | 44.1 | 109 | 2.30 | 19.9 | 35.9 | bdl | 339 | 13.8 | 40.1 | 2.56 | 6.53 | |||
最小值 | 7.25 | 297 | 1.40 | 287 | bdl | bdl | 11.3 | 7.79 | 21.0 | 1.25 | 5.21 | 4.66 | bdl | 219 | 0.35 | 6.37 | 0.21 | 0.45 | |||
最大值 | 8.14 | 361 | 4.75 | 2 009 | 0.29 | 1.36 | 145 | 183 | 419 | 23.1 | 510 | 1 208 | 8.28 | 708 | 125 | 180 | 77.2 | 72.8 | |||
承压水 | 平均值 | 7.72 | 341 | 4.06 | 1 136 | 0.02 | 0.01 | 46.0 | 98.7 | 281 | 3.71 | 243 | 431 | 1.62 | 381 | 24.3 | 138 | 10.4 | 17.9 | ||
中值 | 7.69 | 346 | 4.29 | 988 | 0.01 | bdl | 36.2 | 75.9 | 259 | 2.08 | 164 | 317 | bdl | 379 | 21.2 | 137 | 4.48 | 11.5 | |||
最小值 | 7.03 | 298 | 0.32 | 382 | bdl | bdl | 4.37 | 8.85 | 106 | 0.77 | 12.6 | 58.2 | bdl | 147 | 4.90 | 4.69 | 0.23 | 2.19 | |||
最大值 | 8.54 | 371 | 6.03 | 2 862 | 0.27 | 0.20 | 153 | 384 | 621 | 24.3 | 1 467 | 1 308 | 37.3 | 627 | 85.3 | 355 | 147 | 110 | |||
地表水 | 平均值 | 8.69 | 320 | 5.94 | 1 969 | 0.04 | 0.05 | 39.1 | 175 | 527 | 10.4 | 654 | 787 | 42.1 | 400 | 2.25 | 13.1 | 5.47 | 29.5 | ||
中值 | 8.68 | 326 | 6.22 | 1 420 | 0.01 | 0.03 | 32.2 | 141 | 374 | 8.98 | 357 | 554 | 37.3 | 330 | 0.64 | 8.26 | 6.05 | 29.9 | |||
最小值 | 7.95 | 262 | 3.91 | 440 | bdl | bdl | 19.9 | 56.0 | 205 | 3.78 | 192 | 243 | 16.6 | 202 | bdl | 2.74 | 0.46 | 3.09 | |||
最大值 | 9.24 | 355 | 6.91 | 4 058 | 0.19 | 0.11 | 68.8 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 9.72 | 41.6 | 10.2 | 57.8 | |||
总计 | 平均值 | 7.83 | 336 | 4.05 | 1 102 | 0.02 | 0.04 | 42.1 | 96.8 | 272 | 4.58 | 245 | 400 | 6.22 | 380 | 20.9 | 105 | 9.41 | 17.8 | ||
中值 | 7.79 | 342 | 4.22 | 945 | 0.01 | bdl | 33.1 | 67.5 | 252 | 2.20 | 151 | 268 | bdl | 375 | 18.5 | 102 | 4.04 | 11.0 | |||
最小值 | 7.03 | 262 | 0.32 | 287 | bdl | bdl | 4.37 | 7.79 | 21.0 | 0.77 | 5.21 | 4.66 | bdl | 147 | bdl | 2.74 | 0.21 | 0.45 | |||
最大值 | 9.24 | 371 | 6.91 | 4 058 | 0.29 | 1.36 | 153 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 125 | 355 | 147 | 110 |
表1 研究区主要理化参数统计指数汇总表
Table 1 Statistical table for main physical and chemical parameters for the studied water systems
样品 类型 | 统计 指标 | pH | Eh/ mV | DO/ (mg·L-1) | TDS/ (mg·L-1) | ρA/(mg·L-1) | ρB/(μg·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | Cl- | N | Cr | Mn | Fe | |||||||||||||
潜水 | 平均值 | 7.77 | 332 | 3.20 | 625 | 0.03 | 0.10 | 33.1 | 56.7 | 132 | 4.34 | 68.8 | 144 | 0.55 | 367 | 20.0 | 54.2 | 8.43 | 13.0 | ||
中值 | 7.82 | 335 | 3.41 | 479 | 0.01 | bdl | 25.8 | 44.1 | 109 | 2.30 | 19.9 | 35.9 | bdl | 339 | 13.8 | 40.1 | 2.56 | 6.53 | |||
最小值 | 7.25 | 297 | 1.40 | 287 | bdl | bdl | 11.3 | 7.79 | 21.0 | 1.25 | 5.21 | 4.66 | bdl | 219 | 0.35 | 6.37 | 0.21 | 0.45 | |||
最大值 | 8.14 | 361 | 4.75 | 2 009 | 0.29 | 1.36 | 145 | 183 | 419 | 23.1 | 510 | 1 208 | 8.28 | 708 | 125 | 180 | 77.2 | 72.8 | |||
承压水 | 平均值 | 7.72 | 341 | 4.06 | 1 136 | 0.02 | 0.01 | 46.0 | 98.7 | 281 | 3.71 | 243 | 431 | 1.62 | 381 | 24.3 | 138 | 10.4 | 17.9 | ||
中值 | 7.69 | 346 | 4.29 | 988 | 0.01 | bdl | 36.2 | 75.9 | 259 | 2.08 | 164 | 317 | bdl | 379 | 21.2 | 137 | 4.48 | 11.5 | |||
最小值 | 7.03 | 298 | 0.32 | 382 | bdl | bdl | 4.37 | 8.85 | 106 | 0.77 | 12.6 | 58.2 | bdl | 147 | 4.90 | 4.69 | 0.23 | 2.19 | |||
最大值 | 8.54 | 371 | 6.03 | 2 862 | 0.27 | 0.20 | 153 | 384 | 621 | 24.3 | 1 467 | 1 308 | 37.3 | 627 | 85.3 | 355 | 147 | 110 | |||
地表水 | 平均值 | 8.69 | 320 | 5.94 | 1 969 | 0.04 | 0.05 | 39.1 | 175 | 527 | 10.4 | 654 | 787 | 42.1 | 400 | 2.25 | 13.1 | 5.47 | 29.5 | ||
中值 | 8.68 | 326 | 6.22 | 1 420 | 0.01 | 0.03 | 32.2 | 141 | 374 | 8.98 | 357 | 554 | 37.3 | 330 | 0.64 | 8.26 | 6.05 | 29.9 | |||
最小值 | 7.95 | 262 | 3.91 | 440 | bdl | bdl | 19.9 | 56.0 | 205 | 3.78 | 192 | 243 | 16.6 | 202 | bdl | 2.74 | 0.46 | 3.09 | |||
最大值 | 9.24 | 355 | 6.91 | 4 058 | 0.19 | 0.11 | 68.8 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 9.72 | 41.6 | 10.2 | 57.8 | |||
总计 | 平均值 | 7.83 | 336 | 4.05 | 1 102 | 0.02 | 0.04 | 42.1 | 96.8 | 272 | 4.58 | 245 | 400 | 6.22 | 380 | 20.9 | 105 | 9.41 | 17.8 | ||
中值 | 7.79 | 342 | 4.22 | 945 | 0.01 | bdl | 33.1 | 67.5 | 252 | 2.20 | 151 | 268 | bdl | 375 | 18.5 | 102 | 4.04 | 11.0 | |||
最小值 | 7.03 | 262 | 0.32 | 287 | bdl | bdl | 4.37 | 7.79 | 21.0 | 0.77 | 5.21 | 4.66 | bdl | 147 | bdl | 2.74 | 0.21 | 0.45 | |||
最大值 | 9.24 | 371 | 6.91 | 4 058 | 0.29 | 1.36 | 153 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 125 | 355 | 147 | 110 |
图3 研究区地下水中Cr (a)和Mn (b)沿垂向分布图 垂向虚线为我国地下水饮用质量标准总溶解Cr浓度限值50 μg/L。
Fig.3 Vertical distribution of Cr (a) and Mn (b) concentrations in groundwater in the study area. Red dashed line represents the total dissolved Cr concentration limit of 50 μg/L by China drinking quality standard.
图4 NO 3 --N随深度垂向变化图(a)及 NO 3 --N浓度箱型图(b) 红色虚线为我国地下水饮用质量标准NO3-N浓度限值20 mg/L。
Fig.4 Water chemistry. (a) Vertical variation of NO 3 --N concentration with depth. (b) Box plot showing the range of NO 3 --N concentrations in the studied water systems. Red dashed line represents the NO 3 --N concentration limit (20 mg/L) by China drinking quality standard.
图5 不同水体中δD和δ18O散点图(全球大气降水线(GMWL)方程为δD=8×δ18O+10[24],研究区内当地大气降水线(LMWL)方程(西安)为δD=7.49×δ18O+6.13[23])
Fig.5 Identification of groundwater recharge source in the study area by bivariate analysis. Solid line: global atmospheric waterline (GMWL); black dashed line: local atmospheric precipitation line.
图7 研究区地下水Na++K+-Cl-与Ca2++Mg2+-S HCO 4 2 --C HO 3 -的散点图
Fig.7 Scatter diagram for identification of major factors controlling groundwater chemistry in the study area
图8 研究区地下水n( HCO 3 -)/n(Na+)与n(Ca2+)/n(Na+)(a)和n(Mg2+)/n(Na+)与n(Ca2+)/n(Na+) (b)散点图
Fig.8 Scatter diagram for characterization of clay mineral-water interactions in the study area
岩性 | 个数 | MgO 含量/% | Al2O3 含量/% | SiO2 含量/% | K2O 含量/% | CaO 含量/% | Cr含量/ (mg·kg-1) | Mn含量/ (mg·kg-1) | Fe含量/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
浮土 | 5 | 1.5 | 6.1 | 45.3 | 1.9 | 7.7 | 84.6 | 503 | 24.6 |
黏土 | 5 | 2.1 | 8.2 | 42.0 | 2.6 | 8.7 | 178 | 619 | 37.8 |
泥岩 | 4 | 2.1 | 8.8 | 42.8 | 3.8 | 3.6 | 100 | 401 | 36.0 |
砂岩 | 12 | 2.3 | 7.3 | 51.1 | 2.3 | 5.0 | 113 | 460 | 24.3 |
粉砂岩 | 1 | 2.0 | 7.9 | 45.7 | 2.9 | 6.2 | 154 | 550 | 30.2 |
砂岩夹泥岩 | 6 | 3.2 | 9.4 | 43.7 | 3.3 | 2.6 | 109 | 459 | 49.9 |
泥岩夹砂岩 | 1 | 3.6 | 9.2 | 43.4 | 2.7 | 2.9 | 92.0 | 429 | 31.4 |
粉砂岩夹泥岩 | 1 | 3.6 | 10.6 | 47.9 | 4.1 | 2.8 | 127 | 444 | 55.9 |
粉砂质泥岩 | 1 | 4.0 | 11.3 | 43.1 | 3.8 | 1.2 | 103 | 401 | 57.1 |
泥质砂岩 | 2 | 2.9 | 8.2 | 43.4 | 3.0 | 6.4 | 43.0 | 911 | 26.7 |
泥质粉砂岩 | 2 | 2.2 | 7.3 | 42.5 | 3.1 | 8.6 | 117 | 755 | 29.1 |
表2 不同岩性沉积物主要组分及Cr、Mn、Fe平均含量
Table 2 Major element composition of and Cr, Mn, Fe average contents in sediments of different lithologies
岩性 | 个数 | MgO 含量/% | Al2O3 含量/% | SiO2 含量/% | K2O 含量/% | CaO 含量/% | Cr含量/ (mg·kg-1) | Mn含量/ (mg·kg-1) | Fe含量/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
浮土 | 5 | 1.5 | 6.1 | 45.3 | 1.9 | 7.7 | 84.6 | 503 | 24.6 |
黏土 | 5 | 2.1 | 8.2 | 42.0 | 2.6 | 8.7 | 178 | 619 | 37.8 |
泥岩 | 4 | 2.1 | 8.8 | 42.8 | 3.8 | 3.6 | 100 | 401 | 36.0 |
砂岩 | 12 | 2.3 | 7.3 | 51.1 | 2.3 | 5.0 | 113 | 460 | 24.3 |
粉砂岩 | 1 | 2.0 | 7.9 | 45.7 | 2.9 | 6.2 | 154 | 550 | 30.2 |
砂岩夹泥岩 | 6 | 3.2 | 9.4 | 43.7 | 3.3 | 2.6 | 109 | 459 | 49.9 |
泥岩夹砂岩 | 1 | 3.6 | 9.2 | 43.4 | 2.7 | 2.9 | 92.0 | 429 | 31.4 |
粉砂岩夹泥岩 | 1 | 3.6 | 10.6 | 47.9 | 4.1 | 2.8 | 127 | 444 | 55.9 |
粉砂质泥岩 | 1 | 4.0 | 11.3 | 43.1 | 3.8 | 1.2 | 103 | 401 | 57.1 |
泥质砂岩 | 2 | 2.9 | 8.2 | 43.4 | 3.0 | 6.4 | 43.0 | 911 | 26.7 |
泥质粉砂岩 | 2 | 2.2 | 7.3 | 42.5 | 3.1 | 8.6 | 117 | 755 | 29.1 |
样品类型 | 特征值 | pH | EC/(μS·cm-1) |
---|---|---|---|
全部样品 | 平均值 | 7.90 | 1 267 |
最小值 | 7.40 | 750 | |
最大值 | 8.60 | 1 860 | |
中值 | 7.78 | 1 280 | |
潜水含水层样品 | 平均值 | 7.52 | 1 014 |
最小值 | 7.40 | 750 | |
最大值 | 7.65 | 1 470 | |
中值 | 7.51 | 1 005 | |
承压含水层样品 | 平均值 | 8.04 | 1 362 |
最小值 | 7.48 | 870 | |
最大值 | 8.60 | 1 860 | |
中值 | 8.07 | 1 385 |
表3 潜水含水层、承压含水层沉积物pH、EC值统计表
Table 3 Statistical table for pH and EC values of sediments in unconfined and confined aquifers
样品类型 | 特征值 | pH | EC/(μS·cm-1) |
---|---|---|---|
全部样品 | 平均值 | 7.90 | 1 267 |
最小值 | 7.40 | 750 | |
最大值 | 8.60 | 1 860 | |
中值 | 7.78 | 1 280 | |
潜水含水层样品 | 平均值 | 7.52 | 1 014 |
最小值 | 7.40 | 750 | |
最大值 | 7.65 | 1 470 | |
中值 | 7.51 | 1 005 | |
承压含水层样品 | 平均值 | 8.04 | 1 362 |
最小值 | 7.48 | 870 | |
最大值 | 8.60 | 1 860 | |
中值 | 8.07 | 1 385 |
样品类型 | 统计指标 | wB/(mg·kg-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Mg2+ | Ca2+ | Na+ | F- | Cl- | C | |||||
所有样品 | 平均值 | 59.9 | 13.8 | 25.6 | 201 | 8.3 | 54.6 | 4.9 | 71.9 | 517 | 29.4 |
最小值 | 16.1 | 2.5 | 10.9 | 62.4 | 3.2 | 14.3 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 48.0 | 44.1 | 330 | 16.5 | 160 | 17.4 | 155 | 702 | 114 | |
中值 | 55.4 | 10.0 | 23.3 | 228 | 7.4 | 43.0 | 4.4 | 54.3 | 519 | bdl | |
潜水含水层 | 平均值 | 70.7 | 26.5 | 38.0 | 94.1 | 7.4 | 41.0 | 4.2 | 39.8 | 502 | bdl |
最小值 | 24.5 | 14.7 | 31.7 | 62.4 | 4.2 | 14.3 | bdl | 25.7 | 397 | bdl | |
最大值 | 116 | 48.0 | 44.1 | 125 | 10.8 | 111 | 17.4 | 56.9 | 610 | bdl | |
中值 | 66.8 | 26.1 | 37.2 | 98.4 | 7.4 | 22.0 | 3.9 | 35.2 | 503 | bdl | |
承压含水层 | 平均值 | 55.7 | 8.9 | 20.8 | 242 | 8.6 | 59.8 | 5.2 | 84.1 | 523 | 40.6 |
最小值 | 16.1 | 2.5 | 10.9 | 131 | 3.2 | 17.8 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 27.4 | 34.1 | 330 | 16.5 | 160 | 12.0 | 155 | 702 | 114 | |
中值 | 52.1 | 6.3 | 21.9 | 243 | 8.1 | 45.4 | 4.4 | 89.8 | 519 | 48.0 |
表4 潜水和承压含水层沉积物可溶性组分含量统计表
Table 4 Statistical table for water-soluble ionic species in sediments in unconfined and confined aquifers
样品类型 | 统计指标 | wB/(mg·kg-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Mg2+ | Ca2+ | Na+ | F- | Cl- | C | |||||
所有样品 | 平均值 | 59.9 | 13.8 | 25.6 | 201 | 8.3 | 54.6 | 4.9 | 71.9 | 517 | 29.4 |
最小值 | 16.1 | 2.5 | 10.9 | 62.4 | 3.2 | 14.3 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 48.0 | 44.1 | 330 | 16.5 | 160 | 17.4 | 155 | 702 | 114 | |
中值 | 55.4 | 10.0 | 23.3 | 228 | 7.4 | 43.0 | 4.4 | 54.3 | 519 | bdl | |
潜水含水层 | 平均值 | 70.7 | 26.5 | 38.0 | 94.1 | 7.4 | 41.0 | 4.2 | 39.8 | 502 | bdl |
最小值 | 24.5 | 14.7 | 31.7 | 62.4 | 4.2 | 14.3 | bdl | 25.7 | 397 | bdl | |
最大值 | 116 | 48.0 | 44.1 | 125 | 10.8 | 111 | 17.4 | 56.9 | 610 | bdl | |
中值 | 66.8 | 26.1 | 37.2 | 98.4 | 7.4 | 22.0 | 3.9 | 35.2 | 503 | bdl | |
承压含水层 | 平均值 | 55.7 | 8.9 | 20.8 | 242 | 8.6 | 59.8 | 5.2 | 84.1 | 523 | 40.6 |
最小值 | 16.1 | 2.5 | 10.9 | 131 | 3.2 | 17.8 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 27.4 | 34.1 | 330 | 16.5 | 160 | 12.0 | 155 | 702 | 114 | |
中值 | 52.1 | 6.3 | 21.9 | 243 | 8.1 | 45.4 | 4.4 | 89.8 | 519 | 48.0 |
图10 δ15N- NO 3 -、δ18O- NO 3 -值对氮源识别图(a)及δ15N- NO 3 -、δ18O- NO 3 -值特征位点对应 NO 3 --N浓度图(b)
Fig.10 Scatter diagrams for source identification of nitrogen in studied water systems
图12 研究区硝化反应识别图 (a)及研究区δ15N- NO 3 -与δ18O- NO 3 -值相关性分析 (b)
Fig.12 δ15N- NO 3 --δ18O- NO 3 - scatter diagrams revealing minimal nitrification in studied water systems
图13 不同溶解Cr浓度地下水Eh值与 NO 3 --N浓度散点图
Fig.13 Correlation between Eh value and NO 3 --N concentration in groundwater samples with different Cr concentrations
[1] | 张洪, 王五一, 李海蓉, 等. 地下水硝酸盐污染的研究进展[J]. 水资源保护, 2008, 24(6): 7-11, 67. |
[2] |
LINGLE D A, KEHEW A E, KRISHNAMURTHY R V. Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA[J]. Applied Geochemistry, 2017, 78(1): 334-342.
DOI URL |
[3] |
KELLEY C J, KELLER C K, EVANS R D, et al. Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field[J]. Soil Biology & Biochemistry, 2013, 57: 731-738.
DOI URL |
[4] |
CAO S, FEI Y, TIAN X, et al. Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model[J]. Environmental science and pollution research international, 2021, 28(35): 48343-48361.
DOI |
[5] |
CUI Y, WANG J, HAO S. Spatial variability of nitrate pollution and its sources in a hilly basin of the Yangtze River based on clustering[J]. Scientific Reports, 2021, 11(1): 1-10.
DOI |
[6] |
COYTE R M, MCKINLEY K L, JIANG S, et al. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA[J]. Science of the Total Environment, 2020, 711: 135135.
DOI URL |
[7] | NRIAGU J O, NIEBOER E. Chromium in the natural and human environments[M]. New York: John Wiley & Sons, 1988. |
[8] |
XIE Y, HOLMGREN S, ANDREWS D M K, et al. Evaluating the impact of the U.S. National Toxicology Program: a case study on hexavalent chromium[J]. Environmental Health Perspectives, 2017, 125(2): 181-188.
DOI PMID |
[9] |
LILLI M A, MORAETIS D, NIKOLAIDIS N P, et al. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin[J]. Journal of Hazardous Materials 2015, 281: 12-19.
DOI PMID |
[10] |
NAMGUNG S, KWON M J, QAFOKU N P, et al. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation[J]. Environmental Science & Technology, 2014, 48(18): 10760-10768.
DOI URL |
[11] |
MANNING A H, MILLS C T, MORRISON J M, et al. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA[J]. Applied Geochemistry, 2015, 62: 186-199.
DOI URL |
[12] |
PAPAZOTOS P, VASILEIOU E, PERRAKI M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: the case of the Psachna basin, central Euboea, Greece[J]. Environmental Monitoring and Assessment, 2019, 191(5): 317.
DOI PMID |
[13] |
KAZAKIS N, KANTIRANIS N, VOUDOURIS K S, et al. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater[J]. Science of the Total Environment, 2015, 514: 224-238.
DOI URL |
[14] |
MILLS C T, MORRISON J M, GOLDHABER M B, et al. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater[J]. Applied Geochemistry, 2011, 26(8): 1488-1501.
DOI URL |
[15] |
PAPAZOTOS P, VASILEIOU E, PERRAKI M. Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: the case of the Gerania Mountains, NE Peloponnese, Greece[J]. Applied Geochemistry, 2020, 121: 104697.
DOI URL |
[16] |
OBEIDAT M, AWAWDEH M, AL-KHARABSHEH N, et al. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition[J]. Journal of Arid Land, 2021, 13(4): 350-374.
DOI |
[17] |
SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 2002, 296(5577): 2373-2376.
PMID |
[18] |
COOPER G R C. Oxidation and toxicity of chromium in ultramafic soils in Zimbabwe[J]. Applied Geochemistry, 2002, 17(8): 981-986.
DOI URL |
[19] | 李欣艳, 陈凯, 葛佳亮, 等. 靖边县水源地区域地下水环境变化研究[J]. 水资源与水工程学报, 2020, 31(2): 36-41. |
[20] | 徐春英, 李玉中, 郝卫平, 等. 反硝化细菌法结合痕量气体分析仪/同位素比质谱仪分析水体硝酸盐氮同位素组成[J]. 分析化学, 2012, 40(9): 1360-1365. |
[21] |
郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75.
DOI |
[22] | 王泽文, 邱淑芳. 一类流域点污染源识别的稳定性与数值模拟[J]. 水动力学研究与进展A辑, 2008, 23(4): 364-371. |
[23] | 贺强, 孙从建, 吴丽娜, 等. 基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文, 2018, 38(1): 58-66. |
[24] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
PMID |
[25] |
WANG Z, GUO H, XIU W, et al. High arsenic groundwater in the Guide basin, northwestern China: distribution and genesis mechanisms[J]. Science of the Total Environment, 2018, 640/641(1): 194-206.
DOI URL |
[26] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[27] | 王振. 青海贵德盆地高砷地下水分布和成因探究[D]. 北京: 中国地质大学(北京), 2019. |
[28] |
GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
DOI URL |
[29] | 朱欣然, 刘立, 贾士琚, 等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征: 以靖边县龙洲乡露头为例[J]. 世界地质, 2018, 37(3): 702-711. |
[30] | 翁海成. 基于氮氧同位素的高砷地下水氮来源、 转化及富砷意义[D]. 北京: 中国地质大学(北京), 2019. |
[31] | 袁溶潇. 内蒙古河套盆地含水层沉积物可溶性组分与可溶性砷的分布规律研究[D]. 北京: 中国地质大学(北京), 2017. |
[32] | 谢延玲. 鄂尔多斯盆地中部靖边地区水化学成分演化规律研究[D]. 西安: 西北大学, 2008. |
[33] |
LOHSE K A, SANDERMAN J, AMUNDSON R. Identifying sources and processes influencing nitrogen export to a small stream using dual isotopes of nitrate[J]. Water Resources Research, 2013, 49(9): 5715-5731.
DOI URL |
[34] |
SUN L, LIANG X, JIN M, et al. Ammonium and nitrate sources and transformation mechanism in the Quaternary sediments of Jianghan Plain, China[J]. Science of the Total Environment, 2021, 774: 145131.
DOI URL |
[35] |
TORRES-MARTíNEZ J A, MORA A, MAHLKNECHT J, et al. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model[J]. Environmental Pollution, 2021, 269(602): 115445.
DOI URL |
[36] | KENDALL C, ELLIOTT E M, WANKEL S D. Tracing anthropogenic inputs of nitrogen to ecosystems[M]//MICHENER R, LAJTHA K. Stable isotopes in ecology and environmental science. Oxford: Blackwell Publishing Ltd, 2007: 375-449. |
[37] |
JüRGEN B, OTTO S, SUSANNE V, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4): 413-424.
DOI URL |
[38] |
XUE D, BOTTE J, DE BAETS B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J]. Water Research, 2009, 43(5): 1159-1170.
DOI PMID |
[39] |
MA B, HUANG T, LI J, et al. Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone[J]. Catena, 2021, 198: 105045.
DOI URL |
[40] | ZHOU X, JIANG Y. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4): 389-395. |
[41] | WANG D. Basis for use of nitrogen isotopes to identify nitrogen contamination of groundwater[J]. Acta Geoscientia Sinica, 1997, 18(2): 220-223. |
[42] | ZUO R, PAN M, LI J, et al. Biogeochemical transformation processes of iron, manganese, ammonium under coexisting conditions in groundwater based on experimental data[J]. Journal of Hydrology, 2021, 603(Part C): 127120. |
[43] | AN Q, JIN L, DENG S, et al. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms[J]. Environmental Science and Pollution Reaearch, 2021, 28(24): 31218-31229. |
[44] |
MCMAHON P B, BELITZ K, REDDY J E, et al. Elevated manganese concentrations in United States groundwater, role of land surface-soil-aquifer connections[J]. Environmental Science & Technology, 2019, 53(1): 29-38.
DOI URL |
[45] |
MILLS C T, GOLDHABER M B. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks[J]. Science of the Total Environment, 2012, 435/436: 363-373.
DOI URL |
[1] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[2] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[3] | 付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380. |
[4] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[5] | 谌宏伟, 杨瑶, 黄荷, 周慧, 彭向训, 于莎莎, 喻娓厚, 李正最, 王赵国. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究[J]. 地学前缘, 2024, 31(2): 423-434. |
[6] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[7] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
[8] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[9] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[10] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[11] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
[12] | 鹿帅, 苏小四, 冯晓语, 孙超. 河水入渗过程中近岸带地下水中砷的形成与影响因素研究[J]. 地学前缘, 2022, 29(4): 455-467. |
[13] | 郭巧娜, 赵岳, 周志芳, 林锦, 戴云峰, 李孟军. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479. |
[14] | 王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10. |
[15] | 文冬光, 宋健, 刁玉杰, 张林友, 张福存, 张森琦, 叶成明, 朱庆俊, 史彦新, 金显鹏, 贾小丰, 李胜涛, 刘东林, 王新峰, 杨骊, 马鑫, 吴海东, 赵学亮, 郝文杰. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||