地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 52-67.DOI: 10.13745/j.esf.sf.2024.7.58
赵利1(), 董大伟2,*(
), 李志鹏3, 梁建军3, 王光增4
收稿日期:
2024-04-12
修回日期:
2024-07-26
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
董大伟
作者简介:
赵 利(1988—),男,讲师,主要从事区域大地构造及油气区构造解析工作。E-mail: orchidy@126.com
基金资助:
ZHAO Li1(), DONG Dawei2,*(
), LI Zhipeng3, LIANG Jianjun3, WANG Guangzeng4
Received:
2024-04-12
Revised:
2024-07-26
Online:
2025-09-25
Published:
2025-10-14
Contact:
DONG Dawei
摘要: 准噶尔盆地腹地发育的走滑断层具有数量多、断距小、平行等距和面状分布的特点,不同于盆地边缘走滑断层,不能完全用里德尔剪切模型来解释其成因机制。这将制约该地区走滑断层和局部应力场的构造解析,以及油气勘探部署。为此,本文以莫西庄油田为研究区,基于高精度三维地震数据开展构造解析和构造物理模拟,分析了此类走滑断层的变形特征和成因机制。结果表明:(1)研究区走滑断层弥散式分布,具有走向分段、规模分级、南北分区、垂向分层、成因分类和演化分期特征,最大平移距离6.4~8.3 km,落差小于46 m;(2)多期构造变形和滑脱层造成走滑断层在垂向上发育多个构造层,分别具有“断接式”和“断隔式”特征;(3)研究区走滑断层可以形成于弥散剪切,NEE-SWW走向断层发育为同向里德尔剪切R,NE-SW走向断层为反向里德尔剪切R',近SN走向断层则为低角度反向剪切R'L,EW走向断层为低角度同向剪切RL;(4)弥散剪切控制断块间相对隆升和沉降、断块内应力集中和释放、断层叠接部位拉分和压隆,使得油源断层、应力集中断块和构造高部位成为油气有利聚集区;(5)在准噶尔盆地晚二叠世以来整体左旋和盆地边缘右行压扭背景下,莫索湾凸起对盆1井西凹陷南部边界施加的左行压扭是研究区弥散剪切变形的直接诱因。
中图分类号:
赵利, 董大伟, 李志鹏, 梁建军, 王光增. 准噶尔盆地腹地莫西庄地区弥散式走滑断层特征与成因机制[J]. 地学前缘, 2025, 32(5): 52-67.
ZHAO Li, DONG Dawei, LI Zhipeng, LIANG Jianjun, WANG Guangzeng. The characteristic and mechanics of distributed strike-slip faults in Moxizhuang area, interior of the Junggar Basin[J]. Earth Science Frontiers, 2025, 32(5): 52-67.
图2 研究区走滑断层几何学特征 a—5 000 ms相干体切片,完全切二叠系;b—3 090 ms相干体切片,西北部切侏罗系,东南部切白垩系;c—过研究区的地震剖面及其构造解译;d-g—F1断层的局部放大地震剖面及其构造解译。剖面c-g的位置见图1b。
Fig.2 The geometrics of strike-slip faults in study area
图3 研究区走滑断层运动学特征 a—NEE走向断层落差;b—近SN走向断层落差;c—F1断层沿走向的落差(南盘上升为正);d—F1断层南北两盘的西山窑组煤层厚度沿走向变化。地震剖面位置见图1b。
Fig.3 The kinematics of strike-slip faults in study area
图4 里德尔剪切与弥散剪切模型的物理模拟实验对比(引自文献[8,43]) a—实验平台俯视图;b—砂体表面发育的断层;c—砂体剖面发育的断层;d—断层类型。图中,R—同向里德尔剪切;R'—反向里德尔剪切;P—次级同向断层;T—张破裂;PDZ—主变形带;Y—与主变形带平行的断层;R'L—低角度反向剪切;RL—低角度同向剪切;M—主断层;ϕ—内摩擦角;σ1—最大主应力;σ3—最小主应力;D—走滑量;γ—剪应变;α—旋转角度。
Fig.4 The comparison of Riedel and distributed shear models in physical experiments. Adapted from [8,43].
图6 物理模拟实验结果的三维地形及其构造解译 图a-d为模型Ⅰ的变形过程,图e-h为模型Ⅱ的变形过程。图i和j为图c的局部放大。图中走滑断层线上的短线代表下降盘,并非表示正断层。
Fig.6 3D terrain and their structural interpretation of physical experiment results
图7 模型Ⅰ的实验结果中走滑断层落差(a)和走滑量(b) 图a中,地形高度的趋势是由初始状态下砂体表面未完全抹平造成的,局部齿形是由走滑断层的落差造成的。地形剖面的位置和1号走滑断层位置见图6d。
Fig.7 The throw (a) and strike-slip amount (b) of strike-slip faults in experimental result of model Ⅰ
图8 研究区弥散剪切变形成因机制分析(b引自文献[58]) a—准噶尔盆地发育弥散剪切的动力学背景;b—盆内网状走滑断层系;c—具有块体旋转特征的弥散剪切变形;d—研究区构造变形模型。
Fig.8 The mechanics of distributed shear developed in study area. b adapted from [58].
[1] | DENG S, LI H L, ZHANG Z P, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
[2] | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
[3] | 郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238. |
[4] | 黄雷, 刘池洋, 何发岐, 等. 克拉通盆地内断裂走滑变形特征[J]. 西北大学学报(自然科学版), 2022, 52(6): 930-942. |
[5] | 管树巍, 梁瀚, 姜华, 等. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘, 2022, 29(6): 252-264. |
[6] | 邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520. |
[7] | 林会喜, 王建伟, 曹建军, 等. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究[J]. 地质学报, 2019, 93(12): 3259-3268. |
[8] | SCHREURS G. Fault development and interaction in distributed strike-slip shear zones:an experimental approach[J]. Geological Society, London, Special Publications, 2003, 210(1): 35-52. |
[9] | YIN A, PAPPALARDO R T. Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn’s moon Enceladus[J]. Icarus, 2015, 260: 409-439. |
[10] | YIN A, ZUZA A V, PAPPALARDO R T. Mechanics of evenly spaced strike-slip faults and its implications for the formation of tiger-stripe fractures on Saturn’s moon Enceladus[J]. Icarus, 2016, 266: 204-216. |
[11] | ZUZA A V, YIN A, LIN J, et al. Spacing and strength of active continental strike-slip faults[J]. Earth and Planetary Science Letters, 2017, 457: 49-62. |
[12] | YANG H B, MORESI L N, QUIGLEY M. Fault spacing in continental strike-slip shear zones[J]. Earth and Planetary Science Letters, 2020, 530: 115906. |
[13] | STORTI F, HOLDSWORTH R E, SALVINI F. Intraplate strike-slip deformation belts[J]. Geological Society, London, Special Publications, 2003, 210(1): 1-14. |
[14] | 刘雨晴, 邓尚, 张继标, 等. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘, 2023, 30(6): 95-109. |
[15] | 陈红汉. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展[J]. 地球科学, 2023, 48(6): 2039-2066. |
[16] | MANN P. Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems[J]. Geological Society, London, Special Publications, 2007, 290(1): 13-142. |
[17] | WOODCOCK N H, SCHUBERT C. Continental strike-sliptectonics[M]//HANCOCK P L. Continental tectonics. London: Rergaman Press, 1989, 251-263. |
[18] | QIU H B, DENG S, CAO Z C, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113. |
[19] | 邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6): 1111-1126. |
[20] | 马兵山, 梁瀚, 邬光辉, 等. 四川盆地中部地区多期次走滑断层的形成及演化[J]. 石油勘探与开发, 2023, 50(2): 333-345. |
[21] | LACHENBRUCH A H. Depth and spacing of tension cracks[J]. Journal of Geophysical Research, 1961, 66(12): 4273-4292. |
[22] | ROY M, ROYDEN L H. Crustal rheology and faulting at strike-slip plate boundaries: 1. An analytic model[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5583-5597. |
[23] | ROLANDONE F, JAUPART C. The distributions of slip rate and ductile deformation in a strike-slip shear zone[J]. Geophysical Journal International, 2002, 148(2): 179-192. |
[24] | DOOLEY T P, SCHREURS G. Analogue modelling of intraplate strike-slip tectonics:a review and new experimental results[J]. Tectonophysics, 2012, 574: 1-71. |
[25] | 石新朴, 王绪龙, 曹剑, 等. 准噶尔盆地莫北—莫索湾地区原油成因分类及运聚特征[J]. 沉积学报, 2010, 28(2): 380-387. |
[26] | HAO F, ZHANG Z H, ZOU H Y, et al. Origin and mechanism of the formation of the low-oil-saturation Moxizhuang field, Junggar Basin, China: implication for petroleum exploration in basins having complex histories[J]. AAPG Bulletin, 2011, 95(6): 983-1008. |
[27] | 何登发, 况军, 吴晓智, 等. 准噶尔盆地莫索湾凸起构造演化动力学[J]. 中国石油勘探, 2005, 10(1): 22-33, 2. |
[28] | 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861. |
[29] | 林会喜, 宁飞, 苏皓, 等. 准噶尔盆地腹部车排子-莫索湾古隆起成因机制及油气意义[J]. 岩石学报, 2022, 38(9): 2681-2696. |
[30] | 隋风贵. 准噶尔盆地西北缘构造演化及其与油气成藏的关系[J]. 地质学报, 2015, 89(4): 779-793. |
[31] | YANG F, LI J Z, LU S, et al. Carboniferous to Early Permian tectono-sedimentary evolution in the western Junggar Basin, NW China:implication for the evolution of Junggar Ocean[J]. Frontiers in Earth Science, 2023, 11: 1237367. |
[32] | 彭梓俊, 冯磊, 罗彩明, 等. 塔中隆起走滑断裂分层变形机制研究的物理模拟实验[J]. 现代地质, 2022, 36(4): 1022-1034. |
[33] | 付晓飞, 冯军, 王海学, 等. 走滑断裂“分期—异向” 变形过程砂箱物理模拟: 以塔里木盆地顺北5号断层北段为例[J]. 地球科学, 2023, 48(6): 2104-2116. |
[34] | CARLINI M, VIOLA G, MATTILA J, et al. The role of mechanical stratigraphy on the refraction of strike-slip faults[J]. Solid Earth, 2019, 10(1): 343-356. |
[35] | 潘杰, 刘忠群, 蒲仁海, 等. 鄂尔多斯盆地镇原—泾川地区断层特征及控油意义[J]. 石油地球物理勘探, 2017, 52(2): 360-370, 196-197. |
[36] | 曾韬, 凡睿, 夏文谦, 等. 四川盆地东部走滑断裂识别与特征分析及形成演化: 以涪陵地区为例[J]. 地学前缘, 2023, 30(3): 366-385. |
[37] | 陆克政, 朱筱敏, 漆家福. 含油气盆地分析[M]. 东营: 石油大学出版社, 2001. |
[38] | 张婧琪, 于福生, 庞福基, 等. 准噶尔盆地中部永进地区走滑断裂发育特征及成因物理模拟[J]. 地质学报, 2024, 98(2): 397-420. |
[39] | RICHARD P D, NAYLOR M A, KOOPMAN A. Experimental models of strike-slip tectonics[J]. Petroleum Geoscience, 1995, 1(1): 71-80. |
[40] | 肖阳, 邬光辉, 雷永良, 等. 走滑断裂带贯穿过程与发育模式的物理模拟[J]. 石油勘探与开发, 2017, 44(3): 340-348. |
[41] | DONG D W, ZHAO L, ZHANG W Z, et al. Deformation characteristics and analog modeling of transtensional structures in the Dongying Sag, Bohai Bay Basin[J]. Frontiers of Earth Science, 2024, 18(1): 227-241. |
[42] | GAPAIS D, FIQUET G, COBBOLD P R. Slip system domains, 3. New insights in fault kinematics from plane-strain sandbox experiments[J]. Tectonophysics, 1991, 188(1/2): 143-157. |
[43] | HARDING T P. Petroleum traps associated with wrench faults[J]. American Association of Petroleum Geologists Bulletin, 1974, 58(7), 1290-1304. |
[44] | ALLEN A P, ALLEN R J. Basin analysis: principles and applications to petroleum play assessment[M]. Oxford: Blackwell Publishing, 1990, 188-217. |
[45] | WEIJERMARS R, SCHMELING H. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth and Planetary Interiors, 1986, 43(4): 316-330. |
[46] | MOLNAR P and TAPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 198:419-426. |
[47] | MCKENZIE D, JACKSON J. The relationship between strain rates, crustal thickening, Palaeomagnetism, finite strain and fault movements within a deforming zone[J]. Earth and Planetary Science Letters, 1983, 65(1): 182-202. |
[48] | ENGLAND P. Large rates of rotation in continental lithosphere. undergoing distributed deformation[M]//KISSEL C, LAJ C. Paleomagnetic Rotations and Continental Deformation. Dordrecht: Springer Netherlands, 1989: 157-164. |
[49] | 李永安, M.麦克威廉斯, 李强, 等. 新疆北部古地磁研究[J]. 新疆地质, 1992, 10(4): 287-328. |
[50] | CHOULET F, CHEN Y, COGNÉ J P, et al. First Triassic Palaeomagnetic constraints from Junggar (NW China) and their implications for the Mesozoic tectonics in Central Asia[J]. Journal of Asian Earth Sciences, 2013, 78: 371-394. |
[51] | YI Z Y, HUANG B C, XIAO W J, et al. Paleomagnetic study of Late Paleozoic rocks in the Tacheng basin of west Junggar (NW China): implications for the tectonic evolution of the western altaids[J]. Gondwana Research, 2015, 27(2): 862-877. |
[52] | 赵俊猛, 马宗晋, 姚长利, 等. 准噶尔盆地基底构造分区的重磁异常分析[J]. 新疆石油地质, 2008, 29(1): 7-11. |
[53] | 曲国胜, 马宗晋, 邵学钟, 等. 准噶尔盆地基底构造与地壳分层结构[J]. 新疆石油地质, 2008, 29(6): 669-674. |
[54] | TANG G J, WANG Q, WYMAN D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt:evidence from late Carboniferous adakites and high-Mg diorites in the western Junggar Region, northern Xinjiang (west China)[J]. Chemical Geology, 2010, 277(3/4): 281-300. |
[55] | CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115(1/2/3/4): 137-152. |
[56] | HAN B F, GUO Z J, ZHANG Z C, et al. Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin, 2010, 122(3/4): 627-640. |
[57] | ZHU M, LIANG Z L, WANG X, et al. Mesozoic strike-slip fault system at the margin of the Junggar Basin, NW China[J]. Journal of Structural Geology, 2023, 175: 104950. |
[58] | CROWELL J C. Sedimentation along the San andreas fault, California[M]//DOTT R H, SHAVER R H. Modern and Ancient Geosynclinal Sedimentation. Tulsa, Oklahoma: Society of Economic Paleontologists and Mineralogists Special Publications, 1974: 292-303. |
[59] | JONES R R, GEOFF TANNER P W. Strain partitioning in transpression zones[J]. Journal of Structural Geology, 1995, 17(6): 793-802. |
[60] | LIANG Y Y, ZHANG Y Y, CHEN S, et al. Controls of a strike-slip fault system on the tectonic inversion of the Mahu depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 198: 104229. |
[61] | FITCH T J. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific[J]. Journal of Geophysical Research, 1972, 77(23): 4432-4460. |
[62] | 徐嘉炜. 论走滑断层作用的几个主要问题[J]. 地学前缘, 1995, 2(2): 125-136. |
[63] | 张波, 张进江, 钟大赉, 等. 滇西澜沧江左旋走滑挤压带应变分解的应变和运动学涡度证据[J]. 中国科学(D辑): 地球科学, 2008, 38(10): 1268-1283. |
[1] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[2] | 张家志, 姜在兴, 徐杰, 魏思源, 宋立舟, 刘桐, 沈志晗, 姜晓龙, 李永飞, 张玺. 朝阳盆地白垩系九佛堂组火山沉积作用及其对有机质富集的影响[J]. 地学前缘, 2024, 31(3): 284-297. |
[3] | 曾帅, 邱楠生, 李慧莉, 马安来, 朱秀香, 贾京坤, 张梦霏. 塔里木盆地顺托果勒地区奥陶系碳酸盐岩超压差异分布研究[J]. 地学前缘, 2023, 30(6): 305-315. |
[4] | 刘雨晴, 邓尚, 张继标, 邱华标, 韩俊, 何松高. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘, 2023, 30(6): 95-109. |
[5] | 张保建, 雷玉德, 赵振, 唐显春, 罗银飞, 王贵玲, 高俊, 张代磊. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401. |
[6] | 汤明高, 刘昕昕, 李广, 赵欢乐, 许强, 朱星, 李为乐. 雅鲁藏布江色东普沟冰崩机理试验研究[J]. 地学前缘, 2023, 30(4): 405-417. |
[7] | 谷文龙, 牛花朋, 张关龙, 王圣柱, 于洪洲, 焦小芹, 熊峥嵘, 周健. 乌伦古地区石炭系火山岩成岩作用及其对储层发育的影响[J]. 地学前缘, 2023, 30(2): 296-305. |
[8] | 王小军, 宋永, 郑孟林, 郭旭光, 吴海生, 任海姣, 王韬, 常秋生, 何文军, 王霞田, 郭建辰, 霍进杰. 准噶尔西部陆内盆地构造演化与油气聚集[J]. 地学前缘, 2022, 29(6): 188-205. |
[9] | 焦小芹, 张关龙, 牛花朋, 王圣柱, 于洪洲, 熊峥嵘, 周健, 谷文龙. 准噶尔盆地东北缘石炭系火山岩形成机制:对准噶尔洋盆闭合时限的新启示[J]. 地学前缘, 2022, 29(4): 385-402. |
[10] | 王成, 姜在兴, 孔祥鑫, 张元福, 张建国, 袁晓冬, 刘晓宁. 滦平盆地西瓜园组中段厚层砾岩沉积特征及成因机制研究:来自滦页1井全井段连续取心的证据[J]. 地学前缘, 2022, 29(3): 340-355. |
[11] | Xiaojun WANG, Yong SONG, Baoli BIAN, Junmeng ZHAO, Heng ZHANG, Maodu YAN, Shunping PEI, Qiang XU, Shuaijun WANG, Hongbing LIU, Changhui JU. 准噶尔盆地基底构造[J]. 地学前缘, 2021, 28(6): 235-255. |
[12] | 赵俊猛, 张培震, 张先康, Xiaohui YUAN, Rainer KIND, Robertvander HILST, 甘卫军, 孙继敏, 邓涛, 刘红兵, 裴顺平, 徐强, 张衡, 嘉世旭, 颜茂都, 郭晓玉, 卢占武, 杨小平, 邓攻, 琚长辉. 中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J]. 地学前缘, 2021, 28(5): 230-259. |
[13] | 刘成林,平英奇,郭泽清,田继先,洪唯宇,张蔚,霍俊洲. 柴达木盆地西北古近系新近系异常高压形成机制分析[J]. 地学前缘, 2019, 26(3): 211-219. |
[14] | 郑孟林,樊向东,何文军,杨彤远,唐勇,丁靖,吴海生,陈磊,郭建辰. 准噶尔盆地深层地质结构叠加演变与油气赋存[J]. 地学前缘, 2019, 26(1): 22-32. |
[15] | 黄涵宇,何登发,李英强,范慧达. 四川盆地东南部泸州古隆起的厘定及其成因机制[J]. 地学前缘, 2019, 26(1): 102-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||