Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 92-104.DOI: 10.13745/j.esf.sf.2025.3.1
Previous Articles Next Articles
FU Pingqing(), HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang*(
)
Received:
2025-01-30
Revised:
2025-02-27
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change[J]. Earth Science Frontiers, 2025, 32(3): 92-104.
[1] | CRUTZEN P J. Geology of mankind[J]. Nature, 2002, 415: 23. |
[2] | KOK J F, STORELVMO T, KARYDIS V A, et al. Mineral dust aerosol impacts on global climate and climate change[J]. Nature Reviews Earth & Environment, 2023, 4(2): 71-86. |
[3] |
COCHRAN R E, RYDER O S, GRASSIAN V H, et al. Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate[J]. Accounts of Chemical Research, 2017, 50(3): 599-604.
DOI PMID |
[4] | FRÖHLICH-NOWOISKY J, KAMPF C J, WEBER B, et al. Bioaerosols in the Earth system: climate, health, and ecosystem interactions[J]. Atmospheric Research, 2016, 182: 346-376. |
[5] |
WOLF M J, ZHANG Y, ZAWADOWICZ M A, et al. A biogenic secondary organic aerosol source of cirrus ice nucleating particles[J]. Nature Communications, 2020, 11(1): 4834.
DOI PMID |
[6] | SEITZINGER S P, GAFFNEY O, BRASSEUR G, et al. International geosphere-biosphere programme and Earth system science: three decades of co-evolution[J]. Anthropocene, 2015, 12: 3-16. |
[7] | BRÉVIÈRE E H G, BAKKER D C E, BANGE H W, et al. Surface ocean-lower atmosphere study: scientific synthesis and contribution to Earth system science[J]. Anthropocene, 2015, 12: 54-68. |
[8] | LAW C S, BRÉVIÈRE E, DE LEEUW G, et al. Evolving research directions in surface ocean-lower atmosphere (SOLAS) science[J]. Environmental Chemistry, 2013, 10(1): 1-16. |
[9] | SUNI T, GUENTHER A, HANSSON H C, et al. The significance of land-atmosphere interactions in the Earth system: iLEAPS achievements and perspectives[J]. Anthropocene, 2015, 12: 69-84. |
[10] | RAMESH R, CHEN Z, CUMMINS V, et al. Land-ocean interactions in the coastal zone: past, present & future[J]. Anthropocene, 2015, 12: 85-98. |
[11] | WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. The anthropocene is functionally and stratigraphically distinct from the Holocene[J]. Science, 2016, 351(6269): aad2622. |
[12] | HOUGHTON R A. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences, 2007, 35(1): 313-347. |
[13] | FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2024[J]. Earth System Science Data Discussion, 2024, 2024: 1-133. |
[14] | IPCC (Core Writing Team, H. Lee and J. Romero). Sections. Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change[M]. Geneva, Switzerland: IPCC, 2023: 35-115. |
[15] | LOWE J J, WALKER M. Reconstructing quaternary environments[M]. 3rd ed. London: Routledge, 2014. |
[16] | STORELVMO T. Aerosol effects on climate via mixed-phase and Ice clouds[J]. Annual Review of Earth and Planetary Sciences, 2017, 45(1): 199-222. |
[17] | ZHU T, TANG M, GAO M, et al. Recent progress in atmospheric chemistry research in China: establishing a theoretical framework for the “Air Pollution Complex”[J]. Advances in Atmospheric Sciences, 2023, 40(8): 1339-1361. |
[18] |
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of Earth as a system[J]. Science, 2000, 290(5490): 291-296.
PMID |
[19] | FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130164. |
[20] | HUNTINGTON T G. Evidence for intensification of the global water cycle: review and synthesis[J]. Journal of Hydrology, 2006, 319(1/2/3/4): 83-95. |
[21] | CAO M, WOODWARD F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393(6682): 249-252. |
[22] |
ZHU Z, PIAO S, MYNENI R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6(8): 791-795.
DOI |
[23] | SEIDL R, THOM D, KAUTZ M, et al. Forest disturbances under climate change[J]. Nature Climate Change, 2017, 7(6): 395-402. |
[24] | ZHENG B, CIAIS P, CHEVALLIER F, et al. Record-high CO2 emissions from boreal fires in 2021[J]. Science, 2023, 379(6635): 912-917. |
[25] |
GALLOWAY J N, COWLING E B. Reactive nitrogen and the world: 200 years of change[J]. Ambio, 2002, 31(2): 64-71.
PMID |
[26] | TIAN D, NIU S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2): 024019. |
[27] | LI W, WANG X, SONG W, et al. On the contribution of atmospheric reactive nitrogen deposition to nitrogen burden in a eutrophic Lake in eastern China[J]. Water Research, 2025, 268: 122597. |
[28] | ERWIN K L. Wetlands and global climate change: the role of wetland restoration in a changing world[J]. Wetlands Ecology and Management, 2008, 17(1): 71-84. |
[29] | PIAO S, CIAIS P, HUANG Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43-51. |
[30] |
TIE X, HUANG R J, DAI W, et al. Effect of heavy haze and aerosol pollution on rice and wheat productions in China[J]. Scientific Reports, 2016, 6: 29612.
DOI PMID |
[31] |
HUANG X, DING K, LIU J, et al. Smoke-weather interaction affects extreme wildfires in diverse coastal regions[J]. Science, 2023, 379(6631): 457-461.
DOI PMID |
[32] | HUGHES T P, KERRY J T, ÁLVAREZ-NORIEGA M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373-377. |
[33] | SUNDAY J M, FABRICIUS K E, KROEKER K J, et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat[J]. Nature Climate Change, 2016, 7(1): 81-85. |
[34] | REAY D S, DENTENER F, SMITH P, et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7): 430-437. |
[35] | BARNETT J. Adapting to climate change in pacific island countries: the problem of uncertainty[J]. World Development, 2001, 29(6): 977-993. |
[36] | GREENE C A, GARDNER A S, WOOD M, et al. Ubiquitous acceleration in Greenland Ice Sheet calving from 1985 to 2022[J]. Nature, 2024, 625(7995): 523-528. |
[37] | GARBE J, ALBRECHT T, LEVERMANN A, et al. The hysteresis of the antarctic ice sheet[J]. Nature, 2020, 585(7826): 538-544. |
[38] | FORCADA J, TRATHAN P N. Penguin responses to climate change in the southern ocean[J]. Global Change Biology, 2009, 15(7): 1618-1630. |
[39] | CARDINALE B J, DUFFY J E, GONZALEZ A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401): 59-67. |
[40] | QUINN P K, BATES T S. The case against climate regulation via oceanic phytoplankton sulphur emissions[J]. Nature, 2011, 480(7375): 51-56. |
[41] | JIANG H, CARENA L, HE Y, et al. Photosensitized degradation of DMSO initiated by PAHs at the air-water interface, as an alternative source of organic sulfur compounds to the atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(22): e2021JD035346. |
[42] | MCFIGGANS G, ARTAXO P, BALTENSPERGER U, et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2593-2649. |
[43] | WURL O, WURL E, MILLER L, et al. Formation and global distribution of sea-surface microlayers[J]. Biogeosciences, 2011, 8(1): 121-135. |
[44] | CUI L, XIAO Y, HU W, et al. Enhanced dataset of global marine isoprene emissions from biogenic and photochemical processes for the period 2001-2020[J]. Earth System Science Data, 2023, 15(12): 5403-5425. |
[45] | O’DOWD C D, FACCHINI M C, CAVALLI F, et al. Biogenically driven organic contribution to marine aerosol[J]. Nature, 2004, 431(7009): 676-680. |
[46] | CROFT B, MARTIN R V, MOORE R H, et al. Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region[J]. Atmospheric Chemistry and Physics, 2021, 21(3): 1889-1916. |
[47] | XU L, YU J Y. An ENSO-induced aerosol dipole in the west-central Pacific and its potential feedback to ENSO evolution[J]. Climate Dynamics, 2018, 52(9/10): 5115-5125. |
[48] | CAI W, NG B, GENG T, et al. Anthropogenic impacts on twentieth-century ENSO variability changes[J]. Nature Reviews Earth & Environment, 2023, 4(6): 407-418. |
[49] | TANG X, ZHAO X, BAI Y, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4021-4026. |
[50] | WINDISCH M G, DAVIN E L, SENEVIRATNE S I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts[J]. Nature Climate Change, 2021, 11(10): 867-871. |
[51] | LI Y, LI Z L, WU H, et al. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming[J]. Nature Communications, 2023, 14(1): 121. |
[52] | PENG S S, PIAO S, ZENG Z, et al. Afforestation in China cools local land surface temperature[J]. Proceedings of the National Academy of Sciences, 2014, 111(8): 2915-2919. |
[53] | LI Y, ZHAO M, MOTESHARREI S, et al. Local cooling and warming effects of forests based on satellite observations[J]. Nature Communications, 2015, 6(1): 6603. |
[54] |
LI Y, PIAO S, CHEN A, et al. Local and teleconnected temperature effects of afforestation and vegetation greening in China[J]. National Science Review, 2020, 7(5): 897-912.
DOI PMID |
[55] |
DUVEILLER G, FILIPPONI F, CEGLAR A, et al. Revealing the widespread potential of forests to increase low level cloud cover[J]. Nature Communications, 2021, 12(1): 4337.
DOI PMID |
[56] |
SHRIVASTAVA M, ANDREAE M O, ARTAXO P, et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest[J]. Nature Communications, 2019, 10(1): 1046.
DOI PMID |
[57] | DONG X, LIU Y, LI X, et al. Modeling analysis of biogenic secondary organic aerosol dependence on anthropogenic emissions in China[J]. Environmental Science & Technology Letters, 2022, 9(4): 286-292. |
[58] |
MAHOWALD N. Aerosol indirect effect on biogeochemical cycles and climate[J]. Science, 2011, 334(6057): 794-796.
DOI PMID |
[59] | MAHOWALD N M, KLOSTER S, ENGELSTAEDTER S, et al. Observed 20th century desert dust variability: impact on climate and biogeochemistry[J]. Atmospheric Chemistry and Physics, 2010, 10(22): 10875-10893. |
[60] |
周广胜, 周梦子, 周莉, 等. 陆-气相互作用研究展望[J]. 地球科学进展, 2024, 39(7): 661-670.
DOI |
[61] | SPÄTH F, RAJTSCHAN V, WEBER T K D, et al. The land-atmosphere feedback observatory: a new observational approach for characterizing land-atmosphere feedback[J]. Geoscientific Instrumentation, Methods and Data Systems, 2023, 12(1): 25-44. |
[62] | WU L, CHEN Z, LIN X, et al. Building the integrated observational network of “Transparent Ocean”[J]. Chinese Science Bulletin, 2021, 65(25): 2654-2661. |
[63] | LIU R, WANG L, WANG Z, et al. Cryosphere-hydrometeorology observations for a water tower unit on the Tibetan Plateau using the beiDou-3 navigation satellite system[J]. Bulletin of the American Meteorological Society, 2024, 105(3): E442-E465. |
[64] | GORDON C, COOPER C, SENIOR C A, et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments[J]. Climate Dynamics, 2000, 16(2/3): 147-168. |
[65] | DANABASOGLU G, LAMARQUE J F, BACMEISTER J, et al. The community Earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916. |
[66] | LIN Y, HUANG X, LIANG Y, et al. Community integrated Earth system model (CIESM): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(8): e2019MS002036. |
[67] |
MAURITSEN T, BADER J, BECKER T, et al. Developments in the MPI-M Earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(4): 998-1038.
DOI PMID |
[68] | ZHANG H, ZHANG M, JIN J, et al. Description and climate simulation performance of CAS-ESM version 2[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2020MS002210. |
[69] | GUSTAFSSON N, JANJIĆ T, SCHRAFF C, et al. Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(713): 1218-1256. |
[70] | RABIER F. Overview of global data assimilation developments in numerical weather-prediction centres[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 131(613): 3215-3233. |
[71] | JIANG Z, WORDEN J R, WORDEN H, et al. A 15-year record of CO emissions constrained by MOPITT CO observations[J]. Atmospheric Chemistry and Physics, 2017, 17(7): 4565-4583. |
[72] | ZHANG Y, JACOB D J, LU X, et al. Attribution of the accelerating increase in atmospheric methane during 2010-2018 by inverse analysis of GOSAT observations[J]. Atmospheric Chemistry and Physics, 2021, 21(5): 3643-3666. |
[73] | MIYAZAKI K, BOWMAN K W, YUMIMOTO K, et al. Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric chemical reanalysis[J]. Atmospheric Chemistry and Physics, 2020, 20(2): 931-967. |
[74] | ZHU R, TANG Z, CHEN X, et al. Rapid O3 assimilations-part 1: background and local contributions to tropospheric O3 changes in China in 2015-2020[J]. Geoscientific Model Development, 2023, 16(21): 6337-6354. |
[75] | BEAULIEU J J, WALDO S, BALZ D A, et al. Methane and carbon dioxide emissions from reservoirs: controls and upscaling[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(12): e2019JG005474. |
[76] | HE T L, BOYD R J, VARON D J, et al. Increased methane emissions from oil and gas following the Soviet Union’s collapse[J]. Proceedings of the National Academy of Sciences, 2024, 121(12): e2314600121. |
[77] | HE T L, JONES D B A, MIYAZAKI K, et al. Inverse modelling of Chinese NOx emissions using deep learning: integrating in situ observations with a satellite-based chemical reanalysis[J]. Atmospheric Chemistry and Physics, 2022, 22(21): 14059-14074. |
[78] | HAN W, HE T L, TANG Z, et al. A comparative analysis for a deep learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China[J]. Geoscientific Model Development, 2022, 15(10): 4225-4237. |
[79] | HAN W, HE T L, JIANG Z, et al. The capability of deep learning model to predict ozone across continents in China, the United States and Europe[J]. Geophysical Research Letters, 2023, 50(24): e2023GL104928. |
[80] | WANG S, WANG P, QI Q, et al. Improved estimation of particulate matter in China based on multisource data fusion[J]. Science of the Total Environment, 2023, 869: 161552. |
[81] | WEI J, LI Z, WANG J, et al. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations[J]. Atmospheric Chemistry and Physics, 2023, 23(2): 1511-1532. |
[82] | BEUCLER T, EBERT-UPHOFF I, RASP S, et al. Machine learning for clouds and climate, in clouds and their climatic impact: radiation, circulation, and precipitation[M]. Hoboken, NJ, USA: Wiley, 2023: 325-345. |
[83] | MAMALAKIS A, BARNES E A, HURRELL J W. Using explainable artificial intelligence to quantify “Climate Distinguishability” after stratospheric aerosol injection[J]. Geophysical Research Letters, 2023, 50(20): e2023GL106137. |
[84] | NITOSLAWSKI S A, WONG-STEVENS K, STEENBERG J W N, et al. The digital forest: mapping a decade of knowledge on technological applications for forest ecosystems[J]. Earth’s Future, 2021, 9(8): e2021EF002123. |
[85] | SELLEVOLD R, VIZCAINO M. First application of artificial neural networks to estimate 21st century greenland ice sheet surface melt[J]. Geophysical Research Letters, 2021, 48(16): e2021GL092449. |
[86] | SHI X. Enabling smart dynamical downscaling of extreme precipitation events with machine learning[J]. Geophysical Research Letters, 2020, 47(19): e2020GL090309. |
[87] | RAMPAL N, GIBSON P B, SHERWOOD S, et al. On the extrapolation of generative adversarial networks for downscaling precipitation extremes in warmer climates[J]. Geophysical Research Letters, 2024, 51(23): e2024GL112492. |
[88] | IRRGANG C, SAYNISCH-WAGNER J, DILL R, et al. Self-validating deep learning for recovering terrestrial water storage from gravity and altimetry measurements[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089258. |
[89] | BI K, XIE L, ZHANG H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. |
[90] |
CHEN L, ZHONG X, LI H, et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15(1): 6425.
DOI PMID |
[91] | JACOBSON M C, CHARLSON R J, RODHE H, et al. Earth system science: from biogeochemical cycles to global change[M]. London: Elsevier, 2000. |
[92] | BATTIN T J, LAUERWALD R, BERNHARDT E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944): 449-459. |
[93] | HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308. |
[94] | SCHUUR E A G, MCGUIRE A D, SCHÄDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171-179. |
[95] | DENMAN K L, BRASSEUR G, CHIDTHAISONG A, et al. Couplings between changes in the climate system and biogeochemistry. In climate change 2007:the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change the physical science basis[M]. Cambridge: Cambridge University Press, 2007: 499-587. |
[96] | YUE S, ZHU J, CHEN S, et al. Brown carbon from biomass burning imposes strong circum: Arctic warming[J]. One Earth, 2022, 5(3): 293-304. |
[97] |
ZHU J, PENNER J E, YU F, et al. Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change[J]. Nature Communications, 2019, 10(1): 423.
DOI PMID |
[98] |
SELLERS P J, DICKINSON R E, RANDALL D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 1997, 275(5299): 502-509.
PMID |
[99] | LOMBARDOZZI D, BONAN G B, NYCHKA D W. The emerging anthropogenic signal in land-atmosphere carbon-cycle coupling[J]. Nature Climate Change, 2014, 4(9): 796-800. |
[100] |
CALLAGHAN T V, TWEEDIE C E, WEBBER P J. Multi-decadal changes in tundra environments and ecosystems: the international polar year-back to the future project (IPY-BTF)[J]. Ambio, 2011, 40(6): 555-557.
PMID |
[101] | 中国气象科学研究院. 极地气候变化年报(2023年)[M]. 北京: 中国气象科学研究院, 2024. |
[102] | COHEN J, ZHANG X, FRANCIS J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather[J]. Nature Climate Change, 2019, 10(1): 20-29. |
[103] | RIEBOLD J, RICHLING A, ULBRICH U, et al. On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe[J]. Weather and Climate Dynamics, 2023, 4(3): 663-682. |
[104] |
FU Y, MA Y, ZHONG L, et al. Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective[J]. National Science Review, 2020, 7(3): 500-515.
DOI PMID |
[105] |
LIU Y, LU M, YANG H, et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review, 2020, 7(3): 534-552.
DOI PMID |
[106] | VON GLASOW R, JICKELLS T D, BAKLANOV A, et al. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems[J]. Ambio, 2012, 42(1): 13-28. |
[107] |
WARD N D, MEGONIGAL J P, BOND-LAMBERTY B, et al. Representing the function and sensitivity of coastal interfaces in Earth system models[J]. Nature Communications, 2020, 11(1): 2458.
DOI PMID |
[108] | 郎赟超, 丁虎, 韩晓昆, 等. 地球系统科学观下的滨海湿地生态系统保护和恢复科学[J]. 中国科学基金, 2022, 36(3): 376-382. |
[1] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
[2] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[3] | CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change [J]. Earth Science Frontiers, 2025, 32(3): 52-61. |
[4] | XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze [J]. Earth Science Frontiers, 2025, 32(3): 218-230. |
[5] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[6] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[7] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
[8] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[9] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[10] | XIANG Wu, Jiasong Fang, MO Xiang, HE Ling, SUN Xin-Ting, BI Xiang-Yang. Driving mechanisms for the DOC increases in surface waters released from Northern Peatlands under global change. [J]. Earth Science Frontiers, 2011, 18(6): 72-78. |
[11] | YANG Zhong-Fang, JIA Hua-Ji, TU Chao, HOU Jing-Xie, FENG Hai-Yan. Soil carbon pool in the northeast Inner Mongolia and its influencing factors. [J]. Earth Science Frontiers, 2011, 18(6): 1-10. |
[12] | LIU Cong-Jiang, LANG Bin-Chao, LI Sai-Liang, PIAO He-Chun, CHU Cheng-Long, LIU Chao-Ze, ZHANG Wei. Researches on biogeochemical processes and nutrient cycling in karstic ecological systems, southwest China: A review. [J]. Earth Science Frontiers, 2009, 16(6): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||