Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 156-167.DOI: 10.13745/j.esf.sf.2025.3.50
Previous Articles Next Articles
YANG Yi1,2(), ZHONG Yin3, WANG Shanquan4, WANG Hongyan1, LIAO Hengyi1,5, WANG Xin6
Received:
2025-03-02
Revised:
2025-03-09
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
YANG Yi, ZHONG Yin, WANG Shanquan, WANG Hongyan, LIAO Hengyi, WANG Xin. The role of halogens in Earth’s habitability evolution: The origin of organohalogens and the evolution of organohalide-respiring microorganisms over geological time scales[J]. Earth Science Frontiers, 2025, 32(3): 156-167.
[1] | 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、现在与未来: 地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490. |
[2] | MARTIN R. Earth’s evolving systems: the history of planet Earth[M]. Burlington, MA: Jones & Bartlett Publishers, 2013. |
[3] | HARLOV D E, ARANOVICH L. The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle[M]. Cham: Springer, 2018. |
[4] | PETERS D G. Halogenated organic compounds[M] //HAMMERICHO, LUNDH.Organic electrochemistry. Boca Raton, FL: CRC Press, 2000: 353-395. |
[5] |
AGARWAL V, MILES Z D, WINTER J M, et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse[J]. Chemical Reviews, 2017, 117(8): 5619-5674.
DOI PMID |
[6] |
ATASHGAHI S, HÄGGBLOM M M, SMIDT H. Organohalide respiration in pristine environments: implications for the natural halogen cycle[J]. Environmental Microbiology, 2018, 20(3): 934-948.
DOI PMID |
[7] | HUG L A, MAPHOSA F, LEYS D, et al. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120322. |
[8] | 杨毅, 张耀之, 李秀颖, 等. 脱卤球菌纲(Dehalococcodia Class)在有机卤化物生物地球化学循环中的作用[J]. 环境科学学报, 2019, 39(10): 3207-3214. |
[9] | 徐义刚, 黄小龙, 王强, 等. 地球宜居性的深部驱动机制[J]. 科学通报, 2024, 69(2): 169-183. |
[10] | LÉCUYER C. Water on Earth: physicochemical and biological properties[M]. Hoboken, NJ: John Wiley & Sons, 2013. |
[11] | JACKSON R B, CARPENTER S R, DAHM C N, et al. Water in a changing world[J]. Ecological Applications, 2001, 11(4): 1027-1045. |
[12] | BADA J L. How life began on Earth: a status report[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 1-15. |
[13] | ABE Y, OHTANI E, OKUCHI T, et al. Water in the early Earth[M] //CANUPR M, RIGHTERK. Origin of the Earth and Moon. Tucson: University of Arizona Press, 2000: 413-433. |
[14] | BALL P. Life’s matrix: a biography of water[M]. Berkeley, CA: University of California Press, 2001. |
[15] | MACDOUGALL D. Frozen earth: the once and future story of ice ages[M]. Berkeley, CA: University of California Press, 2013. |
[16] | SUMMERHAYES C P. Paleoclimatology: from snowball Earth to the anthropocene[M]. Hoboken, NJ: John Wiley & Sons, 2020. |
[17] | BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of The Total Environment, 2018, 613-614: 398-408. |
[18] |
MARGESIN R, MITEVA V. Diversity and ecology of psychrophilic microorganisms[J]. Research in Microbiology, 2011, 162(3): 346-361.
DOI PMID |
[19] | RABUS R, RUEPP A, FRICKEY T, et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments[J]. Environmental Microbiology, 2004, 6(9): 887-902. |
[20] | WILLIAMS T J, LIAO Y, YE J, et al. Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi[J]. Environmental Microbiology, 2017, 19(6): 2210-2227. |
[21] | SAXENA A K, YADAV A N, RAJAWAT M V S, et al. Microbial diversity of extreme regions: an unseen heritage and wealth[J]. Indian Journal of Plant Genetic Resources, 2016, 29(3): 246-248. |
[22] | SINGH P, JAIN K, DESAI C, et al. Microbial community dynamics of extremophiles/extreme environment[M] //DASS, DASHH R.Microbial diversity in the genomic era. New York, NY: Academic Press, 2019: 323-332. |
[23] | RIZZOTTI M. The earliest anaerobic and aerobic life[M] //MINELLIA, CONTRAFATTOG. Biological science fundamentals and systematics. Vol. I. Oxford: Eolss Publishers, 2009: 212-230. |
[24] | TAVERNE Y J, MERKUS D, BOGERS A J, et al. Reactive oxygen species: radical factors in the evolution of animal life: a molecular timescale from Earth’s earliest history to the rise of complex life[J]. BioEssays, 2018, 40(3): 1700158. |
[25] | KNOLL A H. The multiple origins of complex multicellularity[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 217-239. |
[26] |
FUGE R. Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100: 393-406.
DOI |
[27] | WINTERTON N. Chlorine: the only green element-towards a wider acceptance of its role in natural cycles[J]. Green Chemistry, 2000, 2(5): 173-225. |
[28] | BARNUM T P, COATES J D. The biogeochemical cycling of chlorine[J]. Geobiology, 2022, 20(5): 634-649. |
[29] | VAINIKKA P, HUPA M. Review on bromine in solid fuels. Part 1: natural occurrence[J]. Fuel, 2012, 95: 1-14. |
[30] | SANYAOLU O M, MOURI H, SELINUS O, et al. Sources, pathways, and health effects of iodine in the environment[M] //SIEGELM, SELINUSO, FINKELMANR. Practical applications of medical geology. Cham: Springer, 2021: 565-613. |
[31] | ANTONYAK H L, PANAS N E, PERSHYN O I, et al. Iodine in abiotic and biotic environments[J]. Studia Biologica, 2018, 12(2): 117-134. |
[32] | BOGASHOVA L G. Influence of halogen processes on the hydrosphere, lithosphere, and biosphere[J]. Geochemistry International, 2011, 49(9): 925-936. |
[33] | EPP T. Halogen (F, Cl, Br, I) cycling in the critical zone: formation of primary ore deposits, their supergene weathering and the fate of halogens in soil and along the hydrological flow path[D]. Tübingen: University of Tübingen, 2020. |
[34] | PENG X, WANG W, XIA M, et al. An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality[J]. National Science Review, 2021, 8(7): nwaa304. |
[35] | YU H, KONG B, DU R X, et al. The distribution characteristics of halogen elements in soil under the impacts of geographical backgrounds and human disturbances[J]. Geoderma, 2017, 305: 236-249. |
[36] | LU Q B. Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: culprits for atmospheric ozone depletion and global climate change[J]. International Journal of Modern Physics B, 2013, 27(17): 1350073. |
[37] | LEYS D, ADRIAN L, SMIDT H. Organohalide respiration: microbes breathing chlorinated molecules[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120316. |
[38] | LIAO H, WANG X, WANG X, et al. Organohalide respiration: retrospective and perspective through bibliometrics[J]. Frontiers in Microbiology, 2024, 15: 1490849. |
[39] |
BLANCHETTE M, KENT W J, RIEMER C, et al. Aligning multiple genomic sequences with the threaded blockset aligner[J]. Genome Research, 2004, 14(4): 708-715.
DOI PMID |
[40] |
YANG Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591.
DOI PMID |
[41] | 袁巍, 毕欢, 张雨丹, 等. 基于比较基因组分析猪特有基因家族及其进化[J]. 基因组学与应用生物学, 2023, 42(7): 726-735. |
[42] |
KUMAR S, STECHER G, SULESKI M, et al. TimeTree: a resource for timelines, timetrees, and divergence times[J]. Molecular Biology and Evolution, 2017, 34(7): 1812-1819.
DOI PMID |
[43] |
MARIN J, BATTISTUZZI F U, BROWN A C, et al. The timetree of prokaryotes: new insights into their evolution and speciation[J]. Molecular Biology and Evolution, 2017, 34(2): 437-446.
DOI PMID |
[44] | KASTING J F, HOWARD M T. Atmospheric composition and climate on the early Earth[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1474): 1733-1742. |
[45] | BARNES C R. Paleoceanography and paleoclimatology: an Earth system perspective[J]. Chemical Geology, 1999, 161(1/2/3): 17-35. |
[46] | CLAY P L, BURGESS R, BUSEMANN H, et al. Halogens in chondritic meteorites and terrestrial accretion[J]. Nature, 2017, 551(7682): 614-618. |
[47] | KENDRICK M A. Halogen cycling in the solid Earth[J]. Annual Review of Earth and Planetary Sciences, 2024, 52: 195-220. |
[48] | XIAO X, ZHANG Y. Life in extreme environments: approaches to study life-environment co-evolutionary strategies[J]. Science China Earth Sciences, 2014, 57(5): 869-877. |
[49] | YANG Y, ZHANG Y, CÁPIRO N L, et al. Genomic characteristics distinguish geographically distributed Dehalococcoidia[J]. Frontiers in Microbiology, 2020, 11: 546063. |
[50] |
LUDEWIG H, MOLYNEUX S, FERRINHO S, et al. Halogenases: structures and functions[J]. Current Opinion in Structural Biology, 2020, 65: 51-60.
DOI PMID |
[51] |
LATHAM J, BRANDENBURGER E, SHEPHERD S A, et al. Development of halogenase enzymes for use in synthesis[J]. Chemical Reviews, 2018, 118(1): 232-269.
DOI PMID |
[52] | VAN PÉE K H, DONG C, FLECKS S, et al. Biological halogenation has moved far beyond haloperoxidases[J]. Advances in Applied Microbiology, 2006, 59: 127-157. |
[53] |
VAN PÉE K H. Microbial biosynthesis of halometabolites[J]. Archives of Microbiology, 2001, 175(4): 250-258.
PMID |
[54] |
RICHARDSON R E. Genomic insights into organohalide respiration[J]. Current Opinion in Biotechnology, 2013, 24(3): 498-505.
DOI PMID |
[55] |
BOMMER M, KUNZE C, FESSELER J, et al. Structural basis for organohalide respiration[J]. Science, 2014, 346(6208): 455-458.
DOI PMID |
[56] |
SUFLITA J M, HOROWITZ A, SHELTON D R, et al. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577): 1115-1117.
PMID |
[57] | TEMME H R, NOVAK P J. Diverse dechlorinators and dechlorination genes enriched through amendment of chlorinated natural organic matter fractions[J]. Environmental Science: Processes & Impacts, 2020, 22(3): 595-605. |
[58] | KRZMARZICK M J, CRARY B B, HARDING J J, et al. Natural niche for organohalide-respiring Chloroflexi[J]. Applied and Environmental Microbiology, 2012, 78(2): 393-401. |
[59] | YANG Y, SANFORD R, YAN J, et al. Roles of organohalide-respiring Dehalococcoidia in carbon cycling[J]. mSystems, 2020, 5(3): e00757-19. |
[60] | ADRIAN L, LÖFFLER F E. Organohalide-respiring bacteria[M]. Berlin:Springer, 2016. |
[61] | MAYMÓ-GATELL X, CHIEN Y T, GOSSETT J M, et al. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene[J]. Science, 1997, 276(5318): 1568-1571. |
[62] | KRASPER L, LILIE H, KUBLIK A, et al. The MarR-type regulator Rdh2R regulates rdh gene transcription in Dehalococcoides mccartyi strain CBDB1[J]. Journal of Bacteriology, 2016, 198(23): 3130-3141. |
[63] | OGATA H, LUBITZ W, HIGUCHI Y. Structure and function of [NiFe] hydrogenases[J]. The Journal of Biochemistry, 2016, 160(5): 251-258. |
[64] | MORTAN S H, MARTÍN-GONZÁLEZ L, VICENT T, et al. Detoxification of 1, 1, 2-trichloroethane to ethene in a bioreactor co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains[J]. Journal of Hazardous Materials, 2017, 331: 218-225. |
[65] | BUCHNER D, MARTIN P R, SCHECKENBACH J, et al. Effects of bacterial growth conditions on carbon and chlorine isotope fractionation associated with TCE biotransformation[J]. ACS ES&T Water, 2022, 2(12): 2510-2518. |
[66] | TOMITA R, YOSHIDA N, MENG L. Formate: a promising electron donor to enhance trichloroethene-to-ethene dechlorination in Dehalococcoides-augmented groundwater ecosystems with minimal bacterial growth[J]. Chemosphere, 2022, 307: 136080. |
[67] | SUNG Y, FLETCHER K E, RITALAHTI K M, et al. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium[J]. Applied and Environmental Microbiology, 2006, 72(4): 2775-2782. |
[68] | YANG Y, SCHUBERT T, LV Y, et al. Comparative genomic analysis reveals preserved features in organohalide-respiring Sulfurospirillum strains[J]. mSphere, 2022, 7(1): e00931-21. |
[69] | OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57. |
[70] | KNOLL A H, NOWAK M A. The timetable of evolution[J]. Science Advances, 2017, 3(5): e1603076. |
[71] | CANFIELD D E. THe early history of atmospheric oxygen: homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 1-36. |
[72] | LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. |
[73] |
HUG L A, THOMAS B C, SHARON I, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages[J]. Environmental Microbiology, 2016, 18(1): 159-173.
DOI PMID |
[74] | LIU J, HARDISTY D S, KASTING J F, et al. Evolution of the iodine cycle and the late stabilization of the Earth’s ozone layer[J]. Proceedings of the National Academy of Sciences, 2025, 122(2): e2412898121. |
[75] | 谢烨婷, 张晓艳, 邓招超, 等. 海洋环境中卤代有机化合物的厌氧微生物还原脱卤研究进展[J/OL]. 微生物学通报, 2024, 1-17 [2025-03-01].https://link.cnki.net/doi/10.13344/j.microbiol.china.240446. |
[76] | 唐斌. 卤代持久性有机污染物和有机磷系阻燃剂在鱼体内的生物富集、食物链传递及生物转化[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019. |
[77] | ZHU X, YANG F, LI Z, et al. Substantial halogenated organic chemicals stored in permafrost soils on the Tibetan Plateau[J]. Nature Geoscience, 2023, 16(11): 989-996. |
[78] | HE J, BEDARD D L. The microbiology of anaerobic PCB dechlorination[M] //ADRIANL, LÖFFLERF E.Organohalide-respiring bacteria. Berlin: Springer, 2016: 541-562. |
[79] | CHEN R, QIN R, BAI H, et al. Recent advances and optimization strategies for the microbial degradation of PCBs: from monocultures to microbial consortia[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(14): 1023-1049. |
[80] | WANG S, CHNG K R, WILM A, et al. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls[J]. Proceedings of the National Academy of Sciences, 2014, 111(33): 12103-12108. |
[81] |
ATASHGAHI S, LIEBENSTEINER M G, JANSSEN D B, et al. Microbial synthesis and transformation of inorganic and organic chlorine compounds[J]. Frontiers in Microbiology, 2018, 9: 3079.
DOI PMID |
[82] |
LU Q, QIU L, YU L, et al. Microbial transformation of chiral organohalides: distribution, microorganisms and mechanisms[J]. Journal of Hazardous Materials, 2019, 368: 849-861.
DOI PMID |
[83] |
LÖFFLER F E, EDWARDS E A. Harnessing microbial activities for environmental cleanup[J]. Current Opinion in Biotechnology, 2006, 17(3): 274-284.
PMID |
[84] | FRIIS A K, HEIMANN A C, JAKOBSEN R, et al. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture[J]. Water Research, 2007, 41(2): 355-364. |
[85] | FLETCHER K E, COSTANZA J, CRUZ-GARCIA C, et al. Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance[J]. Environmental Science & Technology, 2011, 45(2): 712-718. |
[86] | WU Q, BEDARD D L, WIEGEL J. Effect of incubation temperature on the route of microbial reductive dechlorination of 2, 3, 4, 6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments[J]. Applied and Environmental Microbiology, 1997, 63(7): 2836-2843. |
[87] |
WIEGEL J, WU Q. Microbial reductive dehalogenation of polychlorinated biphenyls[J]. FEMS Microbiology Ecology, 2000, 32(1): 1-15.
PMID |
[88] | YANG Y, MCCARTY P L. Biologically enhanced dissolution of tetrachloroethene DNAPL[J]. Environmental Science & Technology, 2000, 34(14): 2979-2984. |
[89] | HUANG D, BECKER J G. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations[J]. Environmental Science & Technology, 2011, 45(3): 1093-1099. |
[90] | YAN J, IM J, YANG Y, et al. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120320. |
[91] | ÖBERG G. The natural chlorine cycle-fitting the scattered pieces[J]. Applied Microbiology and Biotechnology, 2002, 58(5): 565-581. |
[1] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[2] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[3] | GONG Yaoqi, YUE Fujun, LIU Xin, GUO Tianli, WANG Haoyang, LI Siliang. Research progress of coupled hydrological and water environment models in nitrogen cycle of watershed system [J]. Earth Science Frontiers, 2025, 32(3): 183-195. |
[4] | WANG Xinyu, XU Hai, WANG Jing, YANG Yan, WANG Fu, Liu Cong-Qiang. Organic matter molecular composition reveals the impact of sea level change on the evolution of coastal wetland ecosystem since the Last Glacial Maximum on the west coast of Bohai Sea [J]. Earth Science Frontiers, 2025, 32(3): 320-333. |
[5] | XIE Xiangang, ZHAO Wenbin, ZHANG Maoliang, GUO Zhengfu, XU Sheng. Carbon output fluxes of volcanic activity during typical geological periods on the Tibetan Plateau and related environmental implications [J]. Earth Science Frontiers, 2025, 32(3): 350-361. |
[6] | HE Sheng, CAI Hongming, YUAN Wei, CHEN Jiubin. Recent progress in mercury isotopes of the river system [J]. Earth Science Frontiers, 2025, 32(3): 375-391. |
[7] | YANG Ruihan, YANG Ye, CAO Zhenping, XU Sheng. Progress and perspectives of meteoric 10Be applications in Earth Science [J]. Earth Science Frontiers, 2025, 32(3): 392-407. |
[8] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[9] | LIU Jun’an, ZHU Yiping, JIANG Hantao, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, GUO Weimin, YAO Chunyan, WANG Tiangang, ZHANG Ming, YAO Zhongyou. Geochemical characteristics and quality evaluation of soils in the Mantaro Basin, central Peru [J]. Earth Science Frontiers, 2025, 32(1): 219-235. |
[10] | ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland [J]. Earth Science Frontiers, 2024, 31(6): 436-449. |
[11] | LI Liang, JIANG Zhiwei, WU Bingjin, WEI Dongwen, WANG Wenhai. Influence of lead and zinc on geological carbon sink under oxygen-rich conditions [J]. Earth Science Frontiers, 2024, 31(5): 421-429. |
[12] | MA Jianhua, LIU Jinfeng, ZHOU Yongzhang, ZHENG Yijun, LU Kefei, LIN Xingyu, WANG Hanyu, ZHANG Can. Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration [J]. Earth Science Frontiers, 2024, 31(4): 139-146. |
[13] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[14] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[15] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||