Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 320-333.DOI: 10.13745/j.esf.sf.2025.3.21
Previous Articles Next Articles
WANG Xinyu1(), XU Hai1,2,*(
), WANG Jing2, YANG Yan1, WANG Fu3, Liu Cong-Qiang1
Received:
2025-01-09
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
WANG Xinyu, XU Hai, WANG Jing, YANG Yan, WANG Fu, Liu Cong-Qiang. Organic matter molecular composition reveals the impact of sea level change on the evolution of coastal wetland ecosystem since the Last Glacial Maximum on the west coast of Bohai Sea[J]. Earth Science Frontiers, 2025, 32(3): 320-333.
Fig.1 Sketch map of the core locations in the study area, and maximum extent of Holocene marine encroachment and location of palaeoshorelines. DC01, QX01 and QX03 are three parallel cores in the study area (adapted from [22]). The curves and data represent the position of the palaeoshorelines and their ages (adapted from [23]).
样品编号 | 深度/ m | 年代/ a BP | 分子数 | m/zw | Cw | Hw | Ow | Nw | Sw | H/Cw | O/Cw | N/Cw | S/Cw | DBEw | KMDw | AI-modw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QX01-1.45 | 1.45 | 1 350 | 4 777 | 380.05 | 17.04 | 20.02 | 8.93 | 0.45 | 0.17 | 1.18 | 0.55 | 0.04 | 0.01 | 8.31 | 0.32 | 0.24 |
QX01-5.4 | 5.4 | 4 850 | 2 836 | 385.23 | 16.83 | 18.55 | 9.70 | 0.59 | 0.07 | 1.11 | 0.60 | 0.04 | 0.004 | 8.85 | 0.34 | 0.28 |
QX01-6.8 | 6.8 | 5 700 | 5 073 | 385.51 | 17.37 | 20.46 | 8.98 | 0.53 | 0.20 | 1.18 | 0.54 | 0.04 | 0.01 | 8.41 | 0.33 | 0.25 |
QX01-12.4 | 12.4 | 8 050 | 3 419 | 388.82 | 17.03 | 18.62 | 9.64 | 0.58 | 0.14 | 1.09 | 0.59 | 0.04 | 0.01 | 9.01 | 0.35 | 0.29 |
QX01-15.0 | 15.0 | 22 000 | 4 044 | 376.01 | 17.04 | 20.40 | 8.69 | 0.49 | 0.19 | 1.16 | 0.42 | 0.03 | 0.61 | 8.09 | 0.32 | 0.15 |
Table 1 Sedimentary organic matter molecular composition results of 5 samples from core QX01
样品编号 | 深度/ m | 年代/ a BP | 分子数 | m/zw | Cw | Hw | Ow | Nw | Sw | H/Cw | O/Cw | N/Cw | S/Cw | DBEw | KMDw | AI-modw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QX01-1.45 | 1.45 | 1 350 | 4 777 | 380.05 | 17.04 | 20.02 | 8.93 | 0.45 | 0.17 | 1.18 | 0.55 | 0.04 | 0.01 | 8.31 | 0.32 | 0.24 |
QX01-5.4 | 5.4 | 4 850 | 2 836 | 385.23 | 16.83 | 18.55 | 9.70 | 0.59 | 0.07 | 1.11 | 0.60 | 0.04 | 0.004 | 8.85 | 0.34 | 0.28 |
QX01-6.8 | 6.8 | 5 700 | 5 073 | 385.51 | 17.37 | 20.46 | 8.98 | 0.53 | 0.20 | 1.18 | 0.54 | 0.04 | 0.01 | 8.41 | 0.33 | 0.25 |
QX01-12.4 | 12.4 | 8 050 | 3 419 | 388.82 | 17.03 | 18.62 | 9.64 | 0.58 | 0.14 | 1.09 | 0.59 | 0.04 | 0.01 | 9.01 | 0.35 | 0.29 |
QX01-15.0 | 15.0 | 22 000 | 4 044 | 376.01 | 17.04 | 20.40 | 8.69 | 0.49 | 0.19 | 1.16 | 0.42 | 0.03 | 0.61 | 8.09 | 0.32 | 0.15 |
样品编号 | 各元素组合类别占比/% | 各物质组合类占比/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CHO | CHON | CHOS | CHONS | 木质素类 | 单宁类 | 不饱和烃类 | 芳香族 | 脂质 | 蛋白质 | 碳水化合物 | ||
QX01-1.45 | 45.59 | 40.36 | 12.61 | 1.44 | 50.84 | 25.17 | 0.93 | 7.38 | 1.8 | 7.75 | 6.13 | |
QX01-5.4 | 53.01 | 39.01 | 7.73 | 0.25 | 47.03 | 25.77 | 8.62 | 7.19 | 0.85 | 5.67 | 4.87 | |
QX01-6.8 | 40.18 | 34.93 | 20.77 | 4.12 | 61.87 | 7.06 | 3.98 | 4.05 | 2.4 | 13.28 | 7.36 | |
QX01-12.4 | 46.22 | 37.69 | 15.98 | 0.11 | 53.95 | 23.49 | 5.98 | 9.64 | 0.54 | 5.13 | 1.27 | |
QX01-15.0 | 41.88 | 30.37 | 24.46 | 3.29 | 52.82 | 18.34 | 3.11 | 9.17 | 3.07 | 9.97 | 3.52 |
Table 2 The compound groups and elemental composition of SOM molecular composition of 5 samples from core QX01
样品编号 | 各元素组合类别占比/% | 各物质组合类占比/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CHO | CHON | CHOS | CHONS | 木质素类 | 单宁类 | 不饱和烃类 | 芳香族 | 脂质 | 蛋白质 | 碳水化合物 | ||
QX01-1.45 | 45.59 | 40.36 | 12.61 | 1.44 | 50.84 | 25.17 | 0.93 | 7.38 | 1.8 | 7.75 | 6.13 | |
QX01-5.4 | 53.01 | 39.01 | 7.73 | 0.25 | 47.03 | 25.77 | 8.62 | 7.19 | 0.85 | 5.67 | 4.87 | |
QX01-6.8 | 40.18 | 34.93 | 20.77 | 4.12 | 61.87 | 7.06 | 3.98 | 4.05 | 2.4 | 13.28 | 7.36 | |
QX01-12.4 | 46.22 | 37.69 | 15.98 | 0.11 | 53.95 | 23.49 | 5.98 | 9.64 | 0.54 | 5.13 | 1.27 | |
QX01-15.0 | 41.88 | 30.37 | 24.46 | 3.29 | 52.82 | 18.34 | 3.11 | 9.17 | 3.07 | 9.97 | 3.52 |
Fig.3 (a)Relative abundance of compounds corresponding to combinations of elements; (b)Relative abundance of compounds corresponding to each substance combination
Fig.5 Paleo-coastline changes and coastal wetland evolution in Bohai Bay. Blue areas such as the ‘ancient Bei Da Gang’ are areas of perennial waterlogging. Light blue areas are lagoon type, and depressions of various phases. Dark blue areas are sea water inundation areas. Solid and dotted lines represent palaeoshorelines, and data represent palaeoshorelines ages (modified after [43]).
Fig.6 Comparison of CHO fractions of three samples. Venn diagram (a) demonstrates the number of common and unique molecules in the three samples, with 1293 common molecules and 42, 21 and 553 unique molecules in the three samples, respectively. V-K diagram (b) demonstrates the distributions of common and unique components in the three samples.
Fig.7 Highly oxygenated aromatic compounds (AI-modw<0.67, O/C>0.4) in three samples. The red solid line is AI-modw=0.67. The black dashed line is O/C=0.4. The black circles mark land-based sources of organic matter (adapted from [21]).
[1] | 雷茵茹, 崔丽娟, 李伟, 等. 气候变化对中国滨海湿地的影响及对策[J]. 湿地科学与管理, 2016, 12(2): 59-62. |
[2] | KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J/OL]. Nature, 2013, 504(7478): 53-60. DOI:10.1038/nature12856. |
[3] | 2023年中国海平面公报[N]. 中国自然资源报, 2024-05-13(5). |
[4] | CHAMBERS L G, STEINMULLER H E, BREITHAUPT J L. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss[J/OL]. Ecology, 2019, 100(7): e02720. DOI:10.1002/ecy.2720. |
[5] | SUN F, CARSON R T. Coastal wetlands reduce property damage during tropical cyclones[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11): 5719-5725. DOI:10.1073/pnas.1915169117. |
[6] | 李凤林, 阎玉忠, 商志文, 等. 渤海西岸全新世气候演化与海陆变迁[J]. 地质学刊, 2014, 38(2): 173-186. |
[7] | 王宏, 李建芬, 裴艳东, 等. 渤海湾西岸海岸带第四纪地质研究成果概述[J]. 地质调查与研究, 2011, 34(2): 81-97. |
[8] | 王福, 李建芬, 陈永胜, 等. QX01孔记录的渤海湾西岸沿海低地MIS3晚期以来的河道充填与环境演化[J/OL]. 地学前缘, 2016, 23(4): 301- 309. DOI:10.13745/j.esf.2016.04.026. |
[9] | 王福, 王宏, 王云生, 等. 黄骅港北侧潮间带及浅海区沉积物粒度特征[J]. 海洋地质与第四纪地质, 2011, 31(4): 69-74. |
[10] | 陈永胜, 李建芬, 王福, 等. 渤海湾西岸现代岸线钻孔记录的全新世沉积环境与相对海面变化[J/OL]. 吉林大学学报(地球科学版), 2016, 46(2): 499-517. DOI:10.13278/j.cnki.jjuese.201602116. |
[11] | SHE Z, LI Y, GE Y, et al. Late Holocene environmental evolution of Qilihai Lagoon, North China, based on a high-resolution multi-proxy sedimentary record[J/OL]. Catena, 2022, 210: 105942. DOI:10.1016/j.catena.2021.105942. |
[12] | 陈永胜, 王福, 姜兴钰, 等. 渤海湾西岸QX02孔Ⅱ海的识别及OSL年龄[J]. 地质通报, 2016, 35(10): 1600-1606. |
[13] |
CHEN M, KIM J H, CHOI J, et al. Biological early diagenesis and insolation-paced paleoproductivity signified in deep core sediment organic matter[J/OL]. Scientific Reports, 2017, 7: 1581. DOI:10.1038/s41598-017-01759-4.
PMID |
[14] | SCHMIDT F, KOCH B P, WITT M, et al. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction[J/OL]. Geochimica et Cosmochimica Acta, 2014, 141: 83-96. DOI:10.1016/j.gca.2014.06.009. |
[15] | ZHOU C, LIU Y, LIU C, et al. Compositional changes of dissolved organic carbon during its dynamic desorption from hyporheic zone sediments[J/OL]. Science of the Total Environment, 2019, 658: 16-23. DOI:10.1016/j.scitotenv.2018.12.189. |
[16] | TREMBLAY L B, DITTMAR T, MARSHALL A G, et al. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry and excitation/emission spectroscopy[J/OL]. Marine Chemistry, 2007, 105(12): 15-29. DOI:10.1016/j.marchem.2006.12.015. |
[17] | LU Q, HE D, PANG Y, et al. Processing of dissolved organic matter from surface waters to sediment pore waters in a temperate coastal wetland[J/OL]. Science of the Total Environment, 2020, 742: 140491. DOI:10.1016/j.scitotenv.2020.140491. |
[18] | EINSIEDL F, HERTKORN N, WOLF M, et al. Rapid biotic molecular transformation of fulvic acids in a karst aquifer[J/OL]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5474-5482. DOI:10.1016/j.gca.2007.09.024. |
[19] | HU C, XU H, SHI S, et al. Sedimentary organic matter molecular composition reveals the eutrophication of the past 500 years in Lake Daihai, Inner Mongolia[J/OL]. Environmental Research, 2023, 227: 115753. DOI:10.1016/j.envres.2023.115753. |
[20] | SHI S, XU H, SHUI Y, et al. Sedimentary organic molecular compositions reveal the influence of glacier retreat on ecology on the Tibetan Plateau[J/OL]. Science of the Total Environment, 2023, 882: 163629. DOI:10.1016/j.scitotenv.2023.163629. |
[21] | SCHMIDT F, ELVERT M, KOCH B P, et al. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments[J/OL]. Geochimica et Cosmochimica Acta, 2009, 73(11): 3337-3358. DOI:10.1016/j.gca.2009.03.008. |
[22] | WANG F, LI J, CHEN Y, et al. The record of mid-Holocene maximum landward marine transgression in the west coast of Bohai Bay, China[J/OL]. Marine Geology, 2015, 359: 89-95. DOI:10.1016/j.margeo.2014.11.013. |
[23] | 王福, 王宏, 李建芬, 等. 中国海岸20 ka以来的演替过程及趋势分析:对现代海岸生态保护修复的启示[J]. 中国地质, 2023, 50(1): 61-83. |
[24] | PAN L, FANG J, WANG F, et al. Sedimentary environment and relative sea level changes revealed by marine biological membrane[J/OL]. Chemosphere, 2022, 305: 135378. DOI:10.1016/j.chemosphere.2022.135378. |
[25] | 薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004(1): 48-61. |
[26] | 李建芬, 王福, 陈永胜, 等. 渤海湾西南部平原DC01孔晚更新世以来的地质环境变化[J]. 地质通报, 2016, 35(10): 1590-1599. |
[27] | WANG F, ZONG Y, MAUZ B, et al. Holocene sea-level change on the central coast of Bohai Bay, China[J/OL]. Earth Surface Dynamics, 2020, 8(3): 679-693. DOI:10.5194/esurf-8-679-2020. |
[28] | REIMER P J, AUSTIN W E N, BARD E, et al. The Intcal20 northern hemisphere radiocarbon age calibration curve (0-55 Cal Kbp)[J/OL]. Radiocarbon, 2020, 62(4): 725-757. DOI:10.1017/RDC.2020.41. |
[29] |
HE W, CHEN M, PARK J E, et al. Molecular diversity of riverine alkaline-extractable sediment organic matter and its linkages with spectral indicators and molecular size distributions[J/OL]. Water Research, 2016, 100: 222-231. DOI:10.1016/j.watres.2016.05.023.
PMID |
[30] | BAHUREKSA W, TFAILY M M, BOITEAU R M, et al. Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): a critical review of sample preparation, analysis, and data interpretation[J/OL]. Environmental Science & Technology, 2021, 55(14): 9637-9656. DOI:10.1021/acs.est.1c01135. |
[31] | HERTKORN N, BENNER R, FROMMBERGER M, et al. Characterization of a major refractory component of marine dissolved organic matter[J/OL]. Geochimica et Cosmochimica Acta, 2006, 70(12): 2990-3010. DOI:10.1016/j.gca.2006.03.021. |
[32] | KOCH B P, DITTMAR T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter[J/OL]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. DOI:10.1002/rcm.2386. |
[33] | ANTONY R, GRANNAS A M, WILLOUGHBY A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J/OL]. Environmental Science & Technology, 2014, 48(11): 6151-6159. DOI:10.1021/es405246a. |
[34] | 商志文, 田立柱, 范昌福, 等. 渤海湾4.2 ka事件初步研究[J]. 地质通报, 2016, 35(10): 1614-1621. |
[35] | NEVERMANN H, AGHAKOUCHAK A, SHOKRI N. Sea level rise implications on future inland migration of coastal wetlands[J/OL]. Global Ecology and Conservation, 2023, 43: e02421. DOI:10.1016/j.gecco.2023.e02421. |
[36] | OSMAN M B, TIERNEY J E, ZHU J, et al. Globally resolved surface temperatures since the Last Glacial Maximum[J/OL]. Nature, 2021, 599(7884): 239-244. DOI:10.1038/s41586-021-03984-4. |
[37] | ROY K, PELTIER W R. Glacial isostatic adjustment, relative sea level history and mantle viscosity: reconciling relative sea level model predictions for the US east coast with geological constraints[J/OL]. Geophysical Journal International, 2015, 201(2): 1156-1181. DOI:10.1093/gji/ggv066. |
[38] | LI G, LI P, LIU Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the Last Glacial Maximum[J/OL]. Earth-Science Reviews, 2014, 139: 390-405. DOI:10.1016/j.earscirev.2014.09.007. |
[39] | XU Y, LAI Z, LI C. Sea-level change as the driver for lake formation in the Yangtze Plain: a review[J/OL]. Global and Planetary Change, 2019, 181: 102980. DOI:10.1016/j.gloplacha.2019.102980. |
[40] | 赵松龄, 于洪军, 刘敬圃. 晚更新世末期陆架沙漠化环境演化模式的探讨[J]. 中国科学(D辑:地球科学), 1996(2): 142-146. |
[41] | SEERSHOLM F V, WERNDLY D J, GREALY A, et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change[J/OL]. Nature Communications, 2020, 11(1): 2770. DOI:10.1038/s41467-020-16502-3. |
[42] | MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11300 years[J/OL]. Science, 2013, 339(6124): 1198-1201. DOI:10.1126/science.1228026. |
[43] | 王宏. 渤海湾障壁岛-潟湖型成陆过程及对今后海岸带可持续发展的启示:纪念天津地质调查中心第四纪地质调查与研究转入海岸带方向40年[J/OL]. 华北地质, 2022, 45(1): 1-17. DOI:10.19948/j.12-1471/P.2022.01.01. |
[44] | CAO Y, GE Y, WANG S, et al. Reconstructing the rapid transitions of ecosystems during the mid-late Holocene: a pollen record from Haixing wetland in Bohai Bay, North China[J/OL]. Quaternary Science Reviews, 2024, 344: 108973. DOI:10.1016/j.quascirev.2024.108973. |
[45] | SLEIGHTER R L, HATCHER P G. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J/OL]. Marine Chemistry, 2008, 110(3/4): 140-152. DOI:10.1016/j.marchem.2008.04.008. |
[46] | KOCH B P, WITT M, ENGBRODT R, et al. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J/OL]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3299-3308. DOI:10.1016/j.gca.2005.02.027. |
[47] | HOCKADAY W C, GRANNAS A M, KIM S, et al. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil[J/OL]. Organic Geochemistry, 2006, 37(4): 501-510. DOI:10.1016/j.orggeochem.2005.11.003. |
[48] | KRAMER R W, KUJAWINSKI E B, HATCHER P G. Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry[J/OL]. Environmental Science & Technology, 2004, 38(12): 3387-3395. DOI:10.1021/es030124m. |
[49] | KIM S W, KAPLAN L A, BENNER R, et al. Hydrogen-deficient molecules in natural riverine water samples: evidence for the existence of black carbon in DOM[J/OL]. Marine Chemistry, 2004, 92(1/2/3/4): 225-234. DOI:10.1016/j.marchem.2004.06.042. |
[50] | SINNINGHE DAMSTE J S, DE LEEUW J W. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research[J/OL]. Organic Geochemistry, 1990, 16(4): 1077-1101. DOI:10.1016/0146-6380(90)90145-P. |
[1] | LIANG Chen, JIANG Tao, KUANG Zenggui, HU Yipan, YANG Chengzhi, REN Jinfeng, LAI Hongfei. Sedimentary time and genesis mechanism of natural gas hydrate reservoirs in the Qiongdongnan Basin [J]. Earth Science Frontiers, 2025, 32(2): 140-152. |
[2] | ZHANG Zhen,CHENG Rihui,XU Zhongjie,LI Shuanglin. Sequence stratigraphy of the carbonate platform of the Upper Carboniferous Chuanshan Formation and relative sea level change control in the Lower Yangtze region: an example from outcrops in Jurong City, Jiangsu Province. [J]. Earth Science Frontiers, 2018, 25(2): 232-245. |
[3] | WU Siqin,YAN Jiaxin,LIU Ke,YAN Yajuan. Response of early Permian silisiclastic depositional system to the advance of Gondwana glaciation in Southwestern Guizhou. [J]. Earth Science Frontiers, 2016, 23(6): 299-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||