Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4): 237-257.DOI: 10.13745/j.esf.sf.2024.2.15
Previous Articles Next Articles
LIU Wei1,2(), ZHANG Hongrui3,*(
), LUO Dike3, JIA Pengfei3, JIN Lijie1,2, ZHOU Yonggang1, LIANG Yunhan1, WANG Zisheng1, LI Chunjia1
Received:
2023-06-25
Revised:
2024-01-16
Online:
2024-07-25
Published:
2024-07-10
CLC Number:
LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent[J]. Earth Science Frontiers, 2024, 31(4): 237-257.
Fig.1 Simplified geological map of Sub-Saharan Africa: (a) tectonic map of Angola; (b) geological map of Dondo region (c). a modified after [32]; b modified from [33].
样品编号 | 岩性 | 主量元素wB/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O | FeO | MnO | MgO | CaO | Na2O | K2O | ||||||
C33I-5-GS1 | 斑状黑云母 | 69.78 | 0.573 | 14.44 | 3.07 | 1.27 | 0.072 | 0.609 | 1.63 | 3.57 | 5.44 | ||||
C33I-5-GS4 | 二长花岗岩 | 67.25 | 0.673 | 15.46 | 3.3 | 1.28 | 0.112 | 0.709 | 1.74 | 4.07 | 5.68 | ||||
C33I-5-GS10 | 71.77 | 0.413 | 13.98 | 2.41 | 1.05 | 0.074 | 0.538 | 1.25 | 3.67 | 5.3 | |||||
C33I-5-GS11 | 63.53 | 0.773 | 16.5 | 4.37 | 2.31 | 0.07 | 0.877 | 2.52 | 2.62 | 7.35 | |||||
C33I-1-GS2 | 黑云母二 | 75.57 | 0.108 | 12.85 | 0.873 | 0.63 | 0.022 | 0.14 | 0.491 | 3.32 | 5.64 | ||||
C33I-7-GS1 | 长花岗岩 | 71.04 | 0.481 | 13.56 | 3.19 | 1.39 | 0.039 | 0.494 | 0.993 | 2.75 | 5.84 | ||||
C33J-3-GS1 | 74.97 | 0.161 | 13.02 | 1.67 | 0.7 | 0.015 | 0.128 | 0.578 | 3.41 | 5.31 | |||||
样品编号 | 岩性 | 主量元素wB/% | A/NK | A/CNK | K2O/Na2O | FeOT/(FeOT+MgO) | TZr/℃ | ||||||||
K2O+Na2O | P2O5 | H2O+ | LOI | Total | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 9.01 | 0.257 | <0.10 | 0.46 | 99.9 | 1.23 | 0.98 | 1.52 | 0.83 | 877 | ||||
C33I-5-GS4 | 二长花岗岩 | 9.75 | 0.36 | <0.10 | 0.54 | 99.89 | 1.2 | 0.96 | 1.4 | 0.81 | 889 | ||||
C33I-5-GS10 | 8.97 | 0.163 | <0.10 | 0.43 | 99.99 | 1.19 | 1 | 1.45 | 0.81 | 835 | |||||
C33I-5-GS11 | 9.98 | 0.236 | 0.55 | 1.07 | 99.92 | 1.34 | 0.98 | 2.81 | 0.83 | 874 | |||||
C33I-1-GS2 | 黑云母二 | 8.96 | 0.04 | 0.3 | 0.85 | 99.9 | 1.11 | 1.03 | 1.7 | 0.86 | 757 | ||||
C33I-7-GS1 | 长花岗岩 | 8.59 | 0.155 | 0.59 | 1.4 | 99.95 | 1.25 | 1.07 | 2.12 | 0.86 | 862 | ||||
C33J-3-GS1 | 8.72 | 0.03 | 0.22 | 0.61 | 99.9 | 1.15 | 1.05 | 1.56 | 0.99 | 790 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Rb | Ba | Th | U | Nb | Ta | Sr | Sc | V | Cr | ||||||
C33I-5-GS1 | 斑状黑云母 | 145 | 1945 | 10.6 | 1.73 | 28.4 | 1.3 | 255 | 9.29 | 40.3 | 126 | ||||
C33I-5-GS4 | 二长花岗岩 | 171 | 1099 | 12.6 | 2.83 | 37 | 2.61 | 188 | 6.49 | 22.7 | 197 | ||||
C33I-5-GS10 | 141 | 2531 | 10.9 | 1.33 | 35.8 | 1.96 | 400 | 13.8 | 20.5 | 190 | |||||
C33I-5-GS11 | 135 | 1834 | 7.05 | 0.738 | 39.8 | 2.66 | 339 | 7.14 | 18.7 | 184 | |||||
C33I-1-GS2 | 黑云母二 | 92.1 | 262 | 4.49 | 1.2 | 7.2 | 0.406 | 66 | 2.18 | 5.45 | 218 | ||||
C33I-7-GS1 | 长花岗岩 | 190 | 1146 | 35.3 | 2.56 | 21.7 | 1.11 | 163 | 7.35 | 20.4 | 168 | ||||
C33J-3-GS1 | 195 | 750 | 24.7 | 3.78 | 16.8 | 1.13 | 74.6 | 4.5 | 5.36 | 270 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Co | Ni | Ga | Cs | Pb | Zr | Hf | La | Ce | Pr | ||||||
C33I-5-GS1 | 斑状黑云母 | 6.49 | 8.82 | 24.3 | 0.402 | 25.4 | 520.1 | 16.6 | 100 | 188 | 20.2 | ||||
C33I-5-GS4 | 二长花岗岩 | 2.52 | 5.64 | 21.3 | 1.12 | 39.9 | 295.7 | 9.82 | 106 | 197 | 20.3 | ||||
C33I-5-GS10 | 3.23 | 6.61 | 25 | 0.406 | 42.7 | 578.1 | 21.3 | 202 | 423 | 47.1 | |||||
C33I-5-GS11 | 3.01 | 7.01 | 21.9 | 0.21 | 35.3 | 473.5 | 18.5 | 141 | 274 | 34.6 | |||||
C33I-1-GS2 | 黑云母二 | 0.62 | 3.67 | 19.4 | 0.551 | 32.8 | 110 | 3.84 | 28.6 | 51.7 | 6.07 | ||||
C33I-7-GS1 | 长花岗岩 | 3.76 | 5.25 | 20.7 | 1.5 | 30.9 | 351 | 9.49 | 100 | 346 | 23.2 | ||||
C33J-3-GS1 | 1.05 | 20.6 | 16 | 1.31 | 23.4 | 160.4 | 5.74 | 69.9 | 129 | 14.5 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | ||||||
C33I-5-GS1 | 斑状黑云母 | 74.4 | 12.1 | 4.38 | 11.5 | 1.83 | 8.42 | 1.51 | 5.8 | 0.644 | 4.12 | ||||
C33I-5-GS4 | 二长花岗岩 | 74.4 | 11.8 | 3.11 | 12 | 1.93 | 9.27 | 1.75 | 6.73 | 0.899 | 5.77 | ||||
C33I-5-GS10 | 184 | 29.5 | 8.45 | 27.1 | 4.34 | 20.5 | 3.79 | 13.9 | 1.7 | 10.9 | |||||
C33I-5-GS11 | 137 | 24 | 6.04 | 20.2 | 3.73 | 18.9 | 3.73 | 12.9 | 1.78 | 11.2 | |||||
C33I-1-GS2 | 黑云母二 | 21.1 | 3.37 | 0.745 | 3 | 0.453 | 2.23 | 0.379 | 1.42 | 0.184 | 1.3 | ||||
C33I-7-GS1 | 长花岗岩 | 76.8 | 11.9 | 2.63 | 11.7 | 1.64 | 7.33 | 1.22 | 4.56 | 0.542 | 3.42 | ||||
C33J-3-GS1 | 57 | 8.36 | 0.869 | 7.52 | 1.22 | 6.05 | 1.18 | 3.53 | 0.562 | 3.67 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | LREE/HREE | δEu | (La/Yb)N | Nb/Ta | Rb/Nb | ||||||||
Lu | Y | ∑REE | LREE | HREE | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 0.599 | 38.8 | 433.5 | 399.08 | 34.42 | 11.59 | 1.12 | 17.41 | 21.85 | 5.11 | ||||
C33I-5-GS4 | 二长花岗岩 | 0.843 | 49.7 | 451.8 | 412.61 | 39.19 | 10.53 | 0.79 | 13.18 | 14.18 | 4.62 | ||||
C33I-5-GS10 | 1.66 | 116 | 977.94 | 894.05 | 83.89 | 10.66 | 0.9 | 13.29 | 18.27 | 3.94 | |||||
C33I-5-GS11 | 1.55 | 113 | 690.63 | 616.64 | 73.99 | 8.33 | 0.82 | 9.03 | 14.96 | 3.39 | |||||
C33I-1-GS2 | 黑云母二 | 0.224 | 10 | 120.78 | 111.59 | 9.19 | 12.14 | 0.7 | 15.78 | 17.73 | 12.79 | ||||
C33I-7-GS1 | 长花岗岩 | 0.476 | 26.4 | 591.42 | 560.53 | 30.89 | 18.15 | 0.67 | 20.97 | 19.55 | 8.76 | ||||
C33J-3-GS1 | 0.522 | 34.2 | 303.88 | 279.63 | 24.25 | 11.53 | 0.33 | 13.66 | 14.87 | 11.61 |
Table 2 Major and trace element concentrations of the granites from the the Dondo area
样品编号 | 岩性 | 主量元素wB/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O | FeO | MnO | MgO | CaO | Na2O | K2O | ||||||
C33I-5-GS1 | 斑状黑云母 | 69.78 | 0.573 | 14.44 | 3.07 | 1.27 | 0.072 | 0.609 | 1.63 | 3.57 | 5.44 | ||||
C33I-5-GS4 | 二长花岗岩 | 67.25 | 0.673 | 15.46 | 3.3 | 1.28 | 0.112 | 0.709 | 1.74 | 4.07 | 5.68 | ||||
C33I-5-GS10 | 71.77 | 0.413 | 13.98 | 2.41 | 1.05 | 0.074 | 0.538 | 1.25 | 3.67 | 5.3 | |||||
C33I-5-GS11 | 63.53 | 0.773 | 16.5 | 4.37 | 2.31 | 0.07 | 0.877 | 2.52 | 2.62 | 7.35 | |||||
C33I-1-GS2 | 黑云母二 | 75.57 | 0.108 | 12.85 | 0.873 | 0.63 | 0.022 | 0.14 | 0.491 | 3.32 | 5.64 | ||||
C33I-7-GS1 | 长花岗岩 | 71.04 | 0.481 | 13.56 | 3.19 | 1.39 | 0.039 | 0.494 | 0.993 | 2.75 | 5.84 | ||||
C33J-3-GS1 | 74.97 | 0.161 | 13.02 | 1.67 | 0.7 | 0.015 | 0.128 | 0.578 | 3.41 | 5.31 | |||||
样品编号 | 岩性 | 主量元素wB/% | A/NK | A/CNK | K2O/Na2O | FeOT/(FeOT+MgO) | TZr/℃ | ||||||||
K2O+Na2O | P2O5 | H2O+ | LOI | Total | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 9.01 | 0.257 | <0.10 | 0.46 | 99.9 | 1.23 | 0.98 | 1.52 | 0.83 | 877 | ||||
C33I-5-GS4 | 二长花岗岩 | 9.75 | 0.36 | <0.10 | 0.54 | 99.89 | 1.2 | 0.96 | 1.4 | 0.81 | 889 | ||||
C33I-5-GS10 | 8.97 | 0.163 | <0.10 | 0.43 | 99.99 | 1.19 | 1 | 1.45 | 0.81 | 835 | |||||
C33I-5-GS11 | 9.98 | 0.236 | 0.55 | 1.07 | 99.92 | 1.34 | 0.98 | 2.81 | 0.83 | 874 | |||||
C33I-1-GS2 | 黑云母二 | 8.96 | 0.04 | 0.3 | 0.85 | 99.9 | 1.11 | 1.03 | 1.7 | 0.86 | 757 | ||||
C33I-7-GS1 | 长花岗岩 | 8.59 | 0.155 | 0.59 | 1.4 | 99.95 | 1.25 | 1.07 | 2.12 | 0.86 | 862 | ||||
C33J-3-GS1 | 8.72 | 0.03 | 0.22 | 0.61 | 99.9 | 1.15 | 1.05 | 1.56 | 0.99 | 790 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Rb | Ba | Th | U | Nb | Ta | Sr | Sc | V | Cr | ||||||
C33I-5-GS1 | 斑状黑云母 | 145 | 1945 | 10.6 | 1.73 | 28.4 | 1.3 | 255 | 9.29 | 40.3 | 126 | ||||
C33I-5-GS4 | 二长花岗岩 | 171 | 1099 | 12.6 | 2.83 | 37 | 2.61 | 188 | 6.49 | 22.7 | 197 | ||||
C33I-5-GS10 | 141 | 2531 | 10.9 | 1.33 | 35.8 | 1.96 | 400 | 13.8 | 20.5 | 190 | |||||
C33I-5-GS11 | 135 | 1834 | 7.05 | 0.738 | 39.8 | 2.66 | 339 | 7.14 | 18.7 | 184 | |||||
C33I-1-GS2 | 黑云母二 | 92.1 | 262 | 4.49 | 1.2 | 7.2 | 0.406 | 66 | 2.18 | 5.45 | 218 | ||||
C33I-7-GS1 | 长花岗岩 | 190 | 1146 | 35.3 | 2.56 | 21.7 | 1.11 | 163 | 7.35 | 20.4 | 168 | ||||
C33J-3-GS1 | 195 | 750 | 24.7 | 3.78 | 16.8 | 1.13 | 74.6 | 4.5 | 5.36 | 270 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Co | Ni | Ga | Cs | Pb | Zr | Hf | La | Ce | Pr | ||||||
C33I-5-GS1 | 斑状黑云母 | 6.49 | 8.82 | 24.3 | 0.402 | 25.4 | 520.1 | 16.6 | 100 | 188 | 20.2 | ||||
C33I-5-GS4 | 二长花岗岩 | 2.52 | 5.64 | 21.3 | 1.12 | 39.9 | 295.7 | 9.82 | 106 | 197 | 20.3 | ||||
C33I-5-GS10 | 3.23 | 6.61 | 25 | 0.406 | 42.7 | 578.1 | 21.3 | 202 | 423 | 47.1 | |||||
C33I-5-GS11 | 3.01 | 7.01 | 21.9 | 0.21 | 35.3 | 473.5 | 18.5 | 141 | 274 | 34.6 | |||||
C33I-1-GS2 | 黑云母二 | 0.62 | 3.67 | 19.4 | 0.551 | 32.8 | 110 | 3.84 | 28.6 | 51.7 | 6.07 | ||||
C33I-7-GS1 | 长花岗岩 | 3.76 | 5.25 | 20.7 | 1.5 | 30.9 | 351 | 9.49 | 100 | 346 | 23.2 | ||||
C33J-3-GS1 | 1.05 | 20.6 | 16 | 1.31 | 23.4 | 160.4 | 5.74 | 69.9 | 129 | 14.5 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | ||||||
C33I-5-GS1 | 斑状黑云母 | 74.4 | 12.1 | 4.38 | 11.5 | 1.83 | 8.42 | 1.51 | 5.8 | 0.644 | 4.12 | ||||
C33I-5-GS4 | 二长花岗岩 | 74.4 | 11.8 | 3.11 | 12 | 1.93 | 9.27 | 1.75 | 6.73 | 0.899 | 5.77 | ||||
C33I-5-GS10 | 184 | 29.5 | 8.45 | 27.1 | 4.34 | 20.5 | 3.79 | 13.9 | 1.7 | 10.9 | |||||
C33I-5-GS11 | 137 | 24 | 6.04 | 20.2 | 3.73 | 18.9 | 3.73 | 12.9 | 1.78 | 11.2 | |||||
C33I-1-GS2 | 黑云母二 | 21.1 | 3.37 | 0.745 | 3 | 0.453 | 2.23 | 0.379 | 1.42 | 0.184 | 1.3 | ||||
C33I-7-GS1 | 长花岗岩 | 76.8 | 11.9 | 2.63 | 11.7 | 1.64 | 7.33 | 1.22 | 4.56 | 0.542 | 3.42 | ||||
C33J-3-GS1 | 57 | 8.36 | 0.869 | 7.52 | 1.22 | 6.05 | 1.18 | 3.53 | 0.562 | 3.67 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | LREE/HREE | δEu | (La/Yb)N | Nb/Ta | Rb/Nb | ||||||||
Lu | Y | ∑REE | LREE | HREE | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 0.599 | 38.8 | 433.5 | 399.08 | 34.42 | 11.59 | 1.12 | 17.41 | 21.85 | 5.11 | ||||
C33I-5-GS4 | 二长花岗岩 | 0.843 | 49.7 | 451.8 | 412.61 | 39.19 | 10.53 | 0.79 | 13.18 | 14.18 | 4.62 | ||||
C33I-5-GS10 | 1.66 | 116 | 977.94 | 894.05 | 83.89 | 10.66 | 0.9 | 13.29 | 18.27 | 3.94 | |||||
C33I-5-GS11 | 1.55 | 113 | 690.63 | 616.64 | 73.99 | 8.33 | 0.82 | 9.03 | 14.96 | 3.39 | |||||
C33I-1-GS2 | 黑云母二 | 0.224 | 10 | 120.78 | 111.59 | 9.19 | 12.14 | 0.7 | 15.78 | 17.73 | 12.79 | ||||
C33I-7-GS1 | 长花岗岩 | 0.476 | 26.4 | 591.42 | 560.53 | 30.89 | 18.15 | 0.67 | 20.97 | 19.55 | 8.76 | ||||
C33J-3-GS1 | 0.522 | 34.2 | 303.88 | 279.63 | 24.25 | 11.53 | 0.33 | 13.66 | 14.87 | 11.61 |
Fig.6 Primitive mantle-normalized trace element spider diagram (a) and chondrite-normalized REE patterns (b) of the granites from Dondo area, northern Angola Block. Normalization values adapted from [43].
Fig.8 Discrimination diagrams for the genetic types of the granites from Dondo area, northern Angola Block. a,b,c adapted from [42];d adapted from [61].
[93] | HILDRETH W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems[J]. Journal of Volcanology and Geothermal Research, 2004, 136(3/4): 169-198. |
[94] | COOPER K M, KENT A J R. Rapid remobilization of magmatic crystals kept in cold storage[J]. Nature, 2014, 506(7489): 480-483. |
[95] |
COOPER G F, BLUNDY J D, MACPHERSON C G, et al. Evidence from plutonic xenoliths for magma differentiation, mixing and storage in a volatile-rich crystal mush beneath St. Eustatius, Lesser Antilles[J]. Contributions to Mineralogy and Petrology, 2019, 174(5): 39.
DOI PMID |
[96] |
HARTUNG E, WEBER G, CARICCHI L. The role of H2O on the extraction of melt from crystallising magmas[J]. Earth and Planetary Science Letters, 2019, 508: 85-96.
DOI |
[97] | JIANG Y H, LING H F, JIANG S Y, et al. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China[J]. Journal of Petrology, 2005, 46(6): 1121-1154. |
[98] | 刘璐璐, 苏尚国, 侯建光, 等. 河北武安坦岭多斑斜长斑岩的成因: 冻结岩浆房活化机制[J]. 岩石学报, 2017, 33(1): 204-220. |
[99] | CHEN J Y, YANG J H, ZHANG J H. Origin of Cretaceous aluminous and peralkaline A-type granitoids in northeastern Fujian, coastal region of southeastern China[J]. Lithos, 2019, 340: 223-238. |
[100] | CHEN J Y, YANG J H, ZHANG J H, et al. Construction of a highly silicic upper crust in southeastern China: insights from the Cretaceous intermediate-to-felsic rocks in eastern Zhejiang[J]. Lithos, 2021, 402: 106012. |
[101] | EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. |
[102] | PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. |
[103] | MAHÉO G, BLICHERT-TOFT J, PIN C, et al. Partial melting of mantle and crustal sources beneath South Karakorum, Pakistan: implications for the Miocene geodynamic evolution of the India-Asia convergence zone[J]. Journal of Petrology, 2009, 50(3): 427-449. |
[104] | 罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、 岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241. |
[105] | VON BLANCKENBURG F, DAVIES J H. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14(1): 120-131. |
[106] | ALTUNKAYNAK Ş. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey[J]. The Journal of Geology, 2007, 115(1): 63-82. |
[107] | NEILSON, KOKELAAR, CROWLEY. Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland[J]. Journal of the Geological Society, 2009, 166: 545-561. |
[108] | DURETZ T, GERYA T V, MAY D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1/2): 244-256. |
[109] | ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162. |
[110] | ALKMIM F F, MARSHAK S. Transamazonian orogeny in the Southern Sao Francisco Craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrıfero[J]. Precambrian Research, 1998, 90(1/2): 29-58. |
[111] | HOLZER L, FREI R, BARTON J M, et al. Unraveling the record of successive high grade events in the Central Zone of the Limpopo Belt using Pb single phase dating of metamorphic minerals[J]. Precambrian Research, 1998, 87(1/2): 87-115. |
[112] | 古阿雷, 王杰, 任军平, 等. 赞比亚北部卡帕图地区古元古代花岗岩成因: 岩石地球化学、 锆石年代学及Hf同位素约束[J]. 地质学报, 2021, 95(4): 999-1018. |
[113] | 沈莽庭, 徐鸣, 高天山, 等. 巴西圣弗朗西斯科克拉通Ibitiara岩体的锆石U-Pb年代学、 地球化学特征及地质意义[J]. 世界地质, 2020, 39(1): 1-15. |
[1] | ZHAO G C, SUN M, WILDE S A, et al. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123. |
[2] | NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: a retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29. |
[3] | MINTS M V. A neoarchean-Proterozoic supercontinent (-2.8-0.9 Ga): an alternative to the model of supercontinent cycles[J]. Doklady Earth Sciences, 2018, 480(1): 555-558. |
[4] | 邓奇, 汪正江, 任光明, 等. 扬子地块西北缘-2.09 Ga和-1.76 Ga花岗质岩石: Columbia超大陆聚合-裂解的岩浆记录[J]. 地球科学, 2020, 45(9): 3295-3312. |
[5] | 张永旺, 刘汇川, 于志琪, 等. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 2021, 37(4): 1122-1138. |
[6] |
HOFFMAN P F. Did the breakout of laurentia turn Gondwanaland inside-out?[J]. Science, 1991, 252(5011): 1409-1412.
PMID |
[7] | ROGERS J J W, SANTOSH M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 5-22. |
[8] | LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. |
[9] | CAWOOD P A, ZHAO G C, YAO J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194. |
[10] | EVANS D A D, MITCHELL R N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 2011, 39(5): 443-446. |
[11] | 张少兵, 吴鹏, 郑永飞. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录[J]. 地球科学, 2019, 44(12): 4157-4166. |
[12] | SEARS J W, PRICE R A. The hypothetical Mesoproterozoic supercontinent Columbia: implications of the Siberian-West Laurentian connection[J]. Gondwana Research, 2002, 5(1): 35-39. |
[13] | EGLINGTON B M, PEHRSSON S J, ANSDELL K M, et al. A domain-based digital summary of the evolution of the Palaeoproterozoic of North America and Greenland and associated unconformity-related uranium mineralization[J]. Precambrian Research, 2013, 232: 4-26. |
[14] | MEDIG K P R, TURNER E C, THORKELSON D J, et al. Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: the Mesoproterozoic Pinguicula Group of northern Yukon, Canada[J]. Precambrian Research, 2016, 278: 179-206. |
[15] | WANG W, CAWOOD P A, ZHOU M F, et al. Paleoproterozoic magmatic and metamorphic events link Yangtze to Northwest Laurentia in the Nuna supercontinent[J]. Earth and Planetary Science Letters, 2016, 433: 269-279. |
[16] | HAN Q S, PENG S B, KUSKY T, et al. A Paleoproterozoic ophiolitic mélange, Yangtze Craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 2017, 293: 13-38. |
[17] | CUI X Z, WANG J, SUN Z M, et al. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 2019, 169: 308-322. |
[18] | QIU X F, JIANG T, ZHAO X M, et al. Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze Block, South China[J]. Precambrian Research, 2020, 337: 105537. |
[19] | DE CARVALHO H, TASSINARI C, ALVES P H, et al. Geochronological review of the Precambrian in western Angola: links with Brazil[J]. Journal of African Earth Sciences, 2000, 31(2): 383-402. |
[20] | FEYBESSE J L, JOHAN V, TRIBOULET C, et al. The West Central African belt: a model of 2.5-2.0 Ga accretion and two-phase orogenic evolution[J]. Precambrian Research, 1998, 87(3/4): 161-216. |
[21] | DE ASSIS JANASI V, DE FREITAS V A, HEAMAN L H. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: a precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 147-153. |
[22] | WEBER F, GAUTHIER-LAFAYE F, WHITECHURCH H, et al. The 2 Ga Eburnean Orogeny in Gabon and the opening of the Francevillian intracratonic basins: a review[J]. Comptes Rendus Géoscience, 2016, 348(8): 572-586. |
[23] | SCHANNOR M, LANA C, FONSECA M A. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt[J]. Geoscience Frontiers, 2019, 10(2): 611-628. |
[24] | DE WAELE B, JOHNSON S P, PISAREVSKY S A. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: its role in the Rodinia puzzle[J]. Precambrian Research, 2008, 160(1/2): 127-141. |
[25] | DANDERFER A, DE WAELE B, PEDREIRA A J, et al. New geochronological constraints on the geological evolution of Espinhaço Basin within the São Francisco Craton—Brazil[J]. Precambrian Research, 2009, 170(1/2): 116-128. |
[26] | ERNST R E, PEREIRA E, HAMILTON M A, et al. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions[J]. Precambrian Research, 2013, 230: 103-118. |
[27] | SILVEIRA E M, SÖDERLUND U, OLIVEIRA E P, et al. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 2013, 174: 144-156. |
[28] | SALMINEN J M, EVANS D A D, TRINDADE R I F, et al. Paleogeography of the Congo/São Francisco Craton at 1.5 Ga: expanding the core of Nuna supercontinent[J]. Precambrian Research, 2016, 286: 195-212. |
[29] | MEERT J G, SANTOSH M. The Columbia supercontinent revisited[J]. Gondwana Research, 2017, 50: 67-83. |
[30] | CARVALHO H, CRASTO J P, SILVA Z C G, et al. The Kibaran cycle in Angola: a discussion[J]. Geological Journal, 1987, 22(Suppl 2): 85-102. |
[31] | 胡鹏, 任军平, 向鹏, 等. 非洲大陆构造单元划分[J]. 地质通报, 2022, 41(1): 1-18. |
[32] | 古阿雷, 任军平, 王杰, 等. 赞比亚东北部陇都地区首次发现中元古代辉长岩: 哥伦比亚超大陆裂解在班韦乌卢地块的响应[J]. 地质通报, 2022, 41(1): 34-47. |
[33] | DE CARVALHO H, ALVES P. The precambrian of SW Angola and NW Namibia. General remarks. Correlation analysis[C]// International colloquium on Africa geology. Mbabane: Geological Survey and Mines, 1993: 73-76. |
[34] | YUAN H L, GAO S, DAI M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2): 100-118. |
[35] | 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418. |
[36] | ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. |
[37] | LUDWIG K R. A geochronological toolkit for Microsoft Excel[J]. Isoplot, 2003, 3: 1-70. |
[38] | MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. |
[39] | RICKWOOD P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. |
[40] | MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. |
[41] | FROST C D, FROST B R. On ferroan (A-type) granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1): 39-53. |
[42] | WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. |
[43] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[44] | SILVA A T S F, KAWASHITA K. Evolução geológica da Faixa dobrada Cela-Cariango (Angola)[J]. Boletim Sociedade Geológica de Portugal XXI (Fasc.l), 1978, 21: 5-21. |
[45] | TORQUATO J R, SILVA A T S, CORDANI U G, et al. Evolução geológica do Cinturão móvel do Quipungo no Ocidente de Angola[J]. Anais da Academia Brasileira de Ciências, 1979, 51(1): 133-144. |
[46] | JELSMA H A, PERRITT S H A, ARMSTRONG R A, et al. SHRIMP U-Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola[C]// Proceedings of the 23rd CAG, Johannesburg. Pretoria: Council for Geoscience, 2011: 203. |
[47] | JELSMA H, KRISHNAN U, PERRITT S, et al. Kimberlites from central Angola: a case study of exploration findings[C]// Proceedings of 10th international kimberlite conference. New Delhi: Springer, 2013: 173-190. |
[48] | JELSMA H A, MCCOURT S, PERRITT S H, et al. The geology and evolution of the Angolan shield, Congo craton[M]// SIEGESMUNDS, BASEIM A S, OYHANTÇABALP, et al. Regional geology reviews. Cham: Springer International Publishing, 2018: 217-239. |
[49] | MCCOURT S, ARMSTRONG R A, JELSMA H, et al. New U-Pb SHRIMP ages from the Lubango Region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa[J]. Journal of the Geological Society, 2013, 170(2): 353-363. |
[50] | DELOR C, LAFON J M, ROSSI P, et al. Unravelling Precambrian crustal growth of central west Angola: neoarchaean to Siderian inheritance, main Orosirian accretion and discovery of the ‘Angolan’Pan African Belt[C]// Abstract Volume, 21st colloquium of African geology. Maputo: Geological Mining Association of Mozambique, 2006: 40-41. |
[51] | MILANI L, LEHMANN J, BYBEE G M, et al. Geochemical and geochronological constraints on the Mesoproterozoic red granite suite, Kunene amcg complex of Angola and Namibia[J]. Precambrian Research, 2022, 379: 106821. |
[52] | KRÖNER A, ROJAS-AGRAMONTE Y, HEGNER E, et al. SHRIMP zircon dating and Nd isotopic systematics of Palaeoproterozoic migmatitic orthogneisses in the Epupa Metamorphic Complex of northwestern Namibia[J]. Precambrian Research, 2010, 183(1): 50-69. |
[53] | SETH B, KRÖNER A, MEZGER K, et al. Archaean to Neoproterozoic magmatic events in the Kaoko belt of NW Namibia and their geodynamic significance[J]. Precambrian Research, 1998, 92(4): 341-363. |
[54] | SETH B, ARMSTRONG R A, BÜTTNER A, et al. Time constraints for Mesoproterozoic upper amphibolite facies metamorphism in NW Namibia: a multi-isotopic approach[J]. Earth and Planetary Science Letters, 2005, 230(3/4): 355-378. |
[55] | FERREIRA E, LEHMANN J, FELICIANO RODRIGUES J, et al. Zircon U-Pb and Lu-Hf isotopes reveal the crustal evolution of the SW Angolan Shield (Congo Craton)[J]. Gondwana Research, 2024, 131: 317-342. |
[56] | KRÖNER A, ROJAS-AGRAMONTE Y, WONG J, et al. Zircon reconnaissance dating of Proterozoic gneisses along the Kunene River of northwestern Namibia[J]. Tectonophysics, 2015, 662: 125-139. |
[57] | LEHMANN J, BYBEE G M, HAYES B, et al. Emplacement of the giant Kunene AMCG complex into a contractional ductile shear zone and implications for the Mesoproterozoic tectonic evolution of SW Angola[J]. International Journal of Earth Sciences, 2020, 109(4): 1463-1485. |
[58] | 任军平, 左立波, 许康康, 等. 赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J]. 地质论评, 2016, 62(4): 979-996. |
[59] | CAMPENY M, PROENZA J A, CASTILLO-OLIVER M, et al. Petrology, metallogeny and U-Pb geochronology of the Paleoproterozoic mafic-ultramafic Hamutenha intrusion, Angolan Shield[J]. Journal of African Earth Sciences, 2023, 197: 104733. |
[60] | 任军平, 王杰, 左立波, 等. 赞比亚北部省卡萨马西部石英闪长岩锆石U-Pb和Lu-Hf同位素及地球化学特征[J]. 地质学报, 2019, 93(11): 2832-2846. |
[61] | EBY G N. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134. |
[62] | WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433. |
[63] | TURNER S P, FODEN J D, MORRISON R S. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. |
[64] | MUSHKIN A, NAVON O, HALICZ L, et al. The petrogenesis of A-type magmas from the Amram massif, southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. |
[65] | SHELLNUTT J G, ZHOU M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 2007, 243(3/4): 286-316. |
[66] | LITVINOVSKY B A, JAHN B M, ZANVILEVICH A N, et al. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas[J]. Chemical Geology, 2002, 189(1/2): 105-133. |
[67] | KING P L, WHITE A J R, CHAPPELL B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. |
[68] | CREASER R A, PRICE R C, WORMALD R J. A-type granites revisited: assessment of a residual-source model[J]. Geology, 1991, 19(2): 163. |
[69] | SKJERLIE K P, JOHNSTON A D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites[J]. Geology, 1992, 20(3): 263. |
[70] | KERR A, FRYER B J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 1993, 104(1/2/3/4): 39-60. |
[71] | YANG J H, WU F Y, CHUNG S L, et al. A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106. |
[72] | COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. |
[73] | 姜雨奇, 程志国, 魏博雯. 乌兹别克斯坦中天山Kattasay地区A型花岗岩的岩石成因和构造意义[J]. 岩石学报, 2023, 39(11): 3284-3306. |
[74] | NIU X L, CHEN B, MA X. Petrogenesis of the Dengzhazi A-type pluton from the Taihang-Yanshan Mesozoic orogenic belts, North China Craton[J]. Journal of Asian Earth Sciences, 2011, 41(2): 133-146. |
[75] | PATIÑO D A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. |
[76] | CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. |
[77] | TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell, 1985: 1-328. |
[78] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 1-51. |
[79] | MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. |
[80] | 刘志超, 吴福元, 刘小驰, 等. 喜马拉雅淡色花岗岩结晶分异机制概述[J]. 岩石学报, 2020, 36(12): 3551-3571. |
[81] | 杨志国, 陈璟元, 杨进辉, 等. 赣-杭带早白垩世A型花岗岩成因: 浅部地壳岩浆储库活化的产物[J]. 岩石学报, 2023, 39(1): 37-54. |
[82] | LEE C T A, MORTON D M. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409: 23-31. |
[83] | DEERING C D, KELLER B, SCHOENE B, et al. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution[J]. Geology, 2016, 44(4): 267-270. |
[84] | HARTUNG E, CARICCHI L, FLOESS D, et al. Evidence for residual melt extraction in the Takidani pluton, central Japan[J]. Journal of Petrology, 2017, 58(4): 763-788. |
[85] | SCHAEN ALLEN J, COTTLE JOHN M, SINGER BRAD S, et al. Complementary crystal accumulation and rhyolite melt segregation in a late Miocene Andean pluton[J]. Geology, 2017, 45(9): 835-838. |
[86] | DEERING C D, BACHMANN O. Trace element indicators of crystal accumulation in silicic igneous rocks[J]. Earth and Planetary Science Letters, 2010, 297(1/2): 324-331. |
[87] | LIPMAN P W, ZIMMERER M J, MCINTOSH W C. An ignimbrite caldera from the bottom up: exhumed floor and fill of the Resurgent Bonanza Caldera, Southern Rocky Mountain volcanic field, Colorado[J]. Geosphere, 2015, 11(6): 1902-1947. |
[88] | FORNI F, BACHMANN O, MOLLO S, et al. The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy)[J]. Earth and Planetary Science Letters, 2016, 449: 259-271. |
[89] | 罗照华, 邓晋福, 赵国春, 等. 太行山造山带岩浆活动特征及其造山过程反演[J]. 地球科学: 中国地质大学学报, 1997, 22(3): 279-284. |
[90] | MILLER C F, WARK D A. Supervolcanoes and their explosive supereruptions[J]. Elements, 2008, 4(1): 11-15. |
[91] | 罗照华, 周久龙, 黑慧欣, 等. 超级喷发(超级侵入)后成矿作用[J]. 岩石学报, 2014, 30(11): 3131-3154. |
[92] | BLUNDY J, CASHMAN K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631-650. |
[1] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
[2] | WEI Chunjing, ZHAO Yanan, CHU Hang. Multi-phase metamorphism in the Hongqiying Complex, northern Hebei: Records of Paleoproterozoic subduction/collision, late Paleozoic extension and early Mesozoic compression events [J]. Earth Science Frontiers, 2024, 31(1): 95-110. |
[3] | HUANG Chunmei, LI Guangming, FU Jiangang, LIANG Wei, ZHANG Zhi, WANG Yiyun. Early Miocene leucogranitic magmatism in Cuonadong, southern Tibet: Constraints from whole-rock geochemical and mineralogical characteristics [J]. Earth Science Frontiers, 2023, 30(5): 74-92. |
[4] | JIAO Xiaoqin, ZHANG Guanlong, NIU Huapeng, WANG Shengzhu, YU Hongzhou, XIONG Zhengrong, ZHOU Jian, GU Wenlong. Genesis of Carboniferous volcanic rocks in northeastern Junggar Basin: New insights into the Junggar Ocean closure [J]. Earth Science Frontiers, 2022, 29(4): 385-402. |
[5] | KOU Caihua, LIU Yanxue, LI Jiang, LI Tingdong, DING Xiaozhong, LIU Yong, JIN Shengkai. Geochronology and geochemistry of 830 Ma gabbro in the western segment of the Jiangnan Orogen and constraint on its petrogenesis [J]. Earth Science Frontiers, 2022, 29(2): 218-233. |
[6] | WAN Yusheng, DONG Chunyan, LI Pengchuan, MIAO Peisen, WANG Huichu, LI Jianrong. Formation age of the Gaofan Group in Wutai area: New evidence from SHRIMP U-Pb zircon dating [J]. Earth Science Frontiers, 2022, 29(2): 45-55. |
[7] | ZHANG Jibiao, DING Xiaozhong, LIU Yanxue. Petrogenesis and tectonic significance of OIB- and arc-type volcanic rocks in the western Yangtze Block: From intracontinental rifting to subduction [J]. Earth Science Frontiers, 2021, 28(4): 250-266. |
[8] | PEI Shengliang, DING Rufu, SHAN Lihua, YANG Wusheng. Zircon U-Pb geochronology and geochemistry of the Kekebieketi basic complex in Fuyun, Xinjiang and the geological significance [J]. Earth Science Frontiers, 2020, 27(4): 184-198. |
[9] | LI Gang, JIANG Zhiquan, SHAO Xuefeng, GAO Wanli, LIU Zhenghong. [J]. Earth Science Frontiers, 2019, 26(2): 72-91. |
[10] | ZHAO Yuanfang, HU Jianmin, GONG Wangbin, CHEN Hong. Tectonic framework and deformation events in the central Trans-North China Tectonic Belt during the Late Paleoproterozoic [J]. Earth Science Frontiers, 2019, 26(2): 104-119. |
[11] | LIU Lulu,SU Shangguo,YANG Ruina,LUO Zhaohua1,CUI Xiaoliang. Characteristics and research significance of matrix minerals in Tanling poly-phenocryst plagioporphyry, Wu'an, Hebei Province [J]. Earth Science Frontiers, 2019, 26(1): 286-299. |
[12] | HUANG Chunmei,LI Guangming,ZHANG Zhi,LIANG Wei,HUANG Yong,ZHANG Linkui,FU Jiangang. Petrogenesis of the Cuonadong leucogranite in South Tibet: constraints from bulk-rock geochemistry and zircon U-Pb dating. [J]. Earth Science Frontiers, 2018, 25(6): 182-195. |
[13] | OU Bo,WEI Qirong,XU Huan,WANG Jian,ZHANG Min,XU Changjun,JIN lei. Petrogenesis of Early Cretaceous volcanic rocks in the Gezhang area, Namling County, Tibet, China. [J]. Earth Science Frontiers, 2018, 25(6): 165-181. |
[14] | WEI Qirong,ZHAO Shan,WANG Jian,ZHANG Min,XU Huan,OU Bo,XU Changjun,JIN Lei. Petrogenesis of the monzonitic granite of the Qinmalong District, Nanmulin County, Tibet, China. [J]. Earth Science Frontiers, 2018, 25(6): 136-151. |
[15] | ZHANG Jian,LI Huaikun,ZHANG Chuanlin,TIAN Hui,ZHONG Yan,YE Xiantao. New evidence for the breakup of the Columbia supercontinent from the northeastern margin of Tarim Craton: rock geochemistry, zircon U-Pb geochronology and Hf-O isotopic compositions of the ca. 1.55 Ga diabase sills in the Kuruktag area. [J]. Earth Science Frontiers, 2018, 25(6): 106-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||