Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 59-67.DOI: 10.13745/j.esf.sf.2023.9.32
Previous Articles Next Articles
HOU Yusong1,*(), HU Xiaonong1, WU Jichun2,*(
)
Received:
2023-08-10
Revised:
2023-09-30
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees[J]. Earth Science Frontiers, 2024, 31(3): 59-67.
多孔介质 | 孔隙率n | 平均粒径ravg/mm | 胶结体积比例Pc/% |
---|---|---|---|
PM43 | 0.43 | 2.00 | 0.0 |
PM35 | 0.35 | 2.12 | 2.26 |
PM30 | 0.30 | 2.20 | 4.67 |
PM25 | 0.25 | 2.28 | 8.13 |
Table 1 Properties of porous media
多孔介质 | 孔隙率n | 平均粒径ravg/mm | 胶结体积比例Pc/% |
---|---|---|---|
PM43 | 0.43 | 2.00 | 0.0 |
PM35 | 0.35 | 2.12 | 2.26 |
PM30 | 0.30 | 2.20 | 4.67 |
PM25 | 0.25 | 2.28 | 8.13 |
Fig.2 Second spatial central moment along the transverse direction M2,T(a) and the second spatial central moment along the longitudinal direction M2,L(b)
多孔介质 | mT | mL | DT,asym/(m2·s-1) | (DL/DT)asym | tasym/s |
---|---|---|---|---|---|
PM43 | 1.029 | 1.037 | 1.50×10-8 | 14.40 | 1 080 |
PM35 | 0.988 | 1.016 | 1.76×10-8 | 25.71 | 1 080 |
PM30 | 1.007 | 1.073 | 2.23×10-8 | 31.04 | 1 896 |
PM25 | 1.003 | 1.295 | 2.48×10-8 | 77.59 | 7 500 |
Table 2 Solute dispersion characteristics
多孔介质 | mT | mL | DT,asym/(m2·s-1) | (DL/DT)asym | tasym/s |
---|---|---|---|---|---|
PM43 | 1.029 | 1.037 | 1.50×10-8 | 14.40 | 1 080 |
PM35 | 0.988 | 1.016 | 1.76×10-8 | 25.71 | 1 080 |
PM30 | 1.007 | 1.073 | 2.23×10-8 | 31.04 | 1 896 |
PM25 | 1.003 | 1.295 | 2.48×10-8 | 77.59 | 7 500 |
[1] | ROLLE M, HOCHSTETLER D, CHIOGNA G, et al. Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media[J]. Transport in Porous Media, 2012, 93(3): 347-362. |
[2] | SCHEVEN U M. Pore-scale mixing and transverse dispersivity of randomly packed monodisperse spheres[J]. Physical Review Letters, 2013, 110(21): 214504. |
[3] | BIJELJIC B, BLUNT M J. Pore-scale modeling of transverse dispersion in porous media[J]. Water Resources Research, 2007, 43(12): W12S11. |
[4] | KANG P K, DE ANNA P, NUNES J P, et al. Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media[J]. Geophysical Research Letters, 2014, 41(17): 6184-6190. |
[5] | 王景瑞, 赵建世, 胡诗若. 地下水溶质反常运移的分数阶对流扩散模型研究进展[J]. 中国环境科学, 2022, 42(12): 5845-5855. |
[6] | 郭芷琳, 马瑞, 张勇, 等. 地下水污染物在高度非均质介质中的迁移过程: 机理与数值模拟综述[J]. 中国科学: 地球科学, 2021, 51(11): 1817-1836. |
[7] | DENTZ M, BORGNE T L, ENGLERT A, et al. Mixing, spreading and reaction in heterogeneous media: a brief review[J]. Journal of Contaminant Hydrology, 2011, 120/121(Spec): 1-17. |
[8] | CHIOGNA G, CIRPKA O A, GRATHWOHL P, et al. Transverse mixing of conservative and reactive tracers in porous media: quantification through the concepts of flux-related and critical dilution indices[J]. Water Resources Research, 2011, 47(2): W02505. |
[9] | DELGADO J M P Q. Longitudinal and transverse dispersion in porous media[J]. Chemical Engineering Research and Design, 2007, 85(9): 1245-1252. |
[10] | BOON M, BIJELJIC B, NIU B, et al. Observations of 3-D transverse dispersion and dilution in natural consolidated rock by X-ray tomography[J]. Advances in Water Resources, 2016, 96: 266-281. |
[11] | SONNENWALD F, HART J R, WEST P, et al. Transverse and longitudinal mixing in real emergent vegetation at low velocities[J]. Water Resources Research, 2017, 53(1): 961-978. |
[12] | HOU Y, HU B X, LIU S, et al. Using a pore-scale modelling approach to study solute dilution process through cemented porous media[J]. Geofluids, 2022, 2022: 8944803. |
[13] | ROLLE M, CHIOGNA G, HOCHSTETLER D L, et al. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale[J]. Journal of Contaminant Hydrology, 2013, 153(2013): 51-68. |
[14] | DU Z P, CHEN J J, KE S N. Transverse mixing zone under dispersion in porous media: effects of medium heterogeneity and fluid rheology[J]. Physics of Fluids, 2023, 35(4): 043105. |
[15] | ZHANG D, LIU T, PRIGIOBBE V. Enhanced solute transport in porous media due to pH-dependent adsorption and transverse dispersion[J]. Advances in Water Resources, 2022, 164: 104195. |
[16] | BOON M, BIJELJIC B, KREVOR S. Observations of the impact of rock heterogeneity on solute spreading and mixing[J]. Water Resources Research, 2017, 53(6): 4624-4642. |
[17] |
DOLAMORE F, FEE C, DIMARTINO S. Modelling ordered packed beds of spheres: the importance of bed orientation and the influence of tortuosity on dispersion[J]. Journal of Chromatography A, 2018, 1532: 150-160.
DOI PMID |
[18] | 叶逾, 张宇, 蔡芳敏, 等. 宏观各向异性多孔介质中流体变形及溶质运移[J]. 水科学进展, 2021, 32(6): 903-910. |
[19] | 宋依依, 曹阳, 段鑫盈, 等. 秸秆还田深度对土壤团聚体组成及有机碳含量的影响[J]. 土壤, 2022, 54(2): 344-350. |
[20] | BLUNT M J, BIJELJIC B, DONG H, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources, 2013, 51: 197-216. |
[21] | ZHOU J Q, GUO L G, JIAO J J, et al. Geometry-based prediction of solute transport process in single 3D rock fractures under Laminar flow regime[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025542. |
[22] | 周鸿翔, 郑延丰, 吴劳生, 等. 孔隙尺度多孔介质流体流动与溶质运移高性能模拟[J]. 水科学进展, 2020, 31(3): 422-432. |
[23] | PILOTTI M. Generation of realistic porous media by grains sedimentation[J]. Transport in Porous Media, 1998, 33(3): 257-278. |
[24] | KANG Q, LICHTNER P C, ZHANG D. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05203. |
[25] | ZHOU H, YU X, CHEN C, et al. Evaluating hydraulic properties of biochar-amended soil aggregates by high-performance pore-scale simulations[J]. Soil Science Society of America Journal, 2018, 82(1): 1-9. |
[26] | WOLF-GLADROW D A. Lattice-gas cellular automata and lattice Boltzmann models: an introduction[M]. Berlin: Springer, 2004. |
[27] | SRINIVASAN G, TARTAKOVSKY D M, DENTZ M, et al. Random walk particle tracking simulations of non-Fickian transport in heterogeneous media[J]. Journal of Computational Physics, 2010, 229(11): 4304-4314. |
[28] | HOU Y S, WU J, JIANG J. Time behavior of anomalous solute transport in three-dimensional cemented porous media[J]. Soil Science Society of America Journal, 2019, 83(4): 1012-1023. |
[29] | LU C, WANG Z, ZHAO Y, et al. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields[J]. Journal of Hydrology, 2018, 560: 97-108. |
[1] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[2] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[3] | LI Yudan, YOU Yuchun, ZENG Daqian, SHI Zhiliang, GU Shaohua, ZHANG Rui. Numerical simulation of water intrusion in wet gas reservoirs: A case study of the Changxing gas reservoir in Yuanba [J]. Earth Science Frontiers, 2023, 30(6): 341-350. |
[4] | SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation [J]. Earth Science Frontiers, 2023, 30(3): 465-475. |
[5] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[6] | LIU Yong, ZHANG Qi, QIAN Jiazhong, WU Dun, ZHANG Wenyong. Simulation of bimolecular reactive solute transport in porous media via image analysis [J]. Earth Science Frontiers, 2022, 29(3): 248-255. |
[7] | SHEN Xiaofang, WAN Yuyu, WANG Ligang, SU Xiaosi, DONG Weihong. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated sit [J]. Earth Science Frontiers, 2021, 28(5): 90-103. |
[8] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
[9] | WANG Dianju, LI Jianghai, LI Yihe. Rheology of the lower crust controls the polarity of conjugated basins asymmetry on the South Atlantic passive margin [J]. Earth Science Frontiers, 2020, 27(3): 254-261. |
[10] | KONG Yanlong, HUANG Yonghui, ZHENG Tianyuan, LU Renchao, PAN Sheng, SHAO Haibing, PANG Zhonghe. Principle and application of OpenGeoSys for geothermal energy sustainable utilization [J]. Earth Science Frontiers, 2020, 27(1): 170-177. |
[11] | GAO Zhipeng,GUO Huaming,QU Jihong. Numerical simulation of nitrogen transport in river-groundwater system in the Weihe River Basin. [J]. Earth Science Frontiers, 2018, 25(3): 273-284. |
[12] | YUE Zong-Yu, DI Kai-Chang, LIU Zao-Qin, HU Wen-Min, GOU Sheng. The principle of substitution of equation of state and error analysis for crater simulation [J]. Earth Science Frontiers, 2014, 21(6): 204-211. |
[13] | . Constraints of dike thicknesses on the metallogenesis and its application to the Shihu gold deposit. [J]. Earth Science Frontiers, 2011, 18(1): 166-178. |
[14] | LI Xi-Guang YAN Xiao-Min LIANG Ji. Nanning Cenozoic asthenosphere upwelling plume and its influence on the shallow surface structure. [J]. Earth Science Frontiers, 2009, 16(4): 261-. |
[15] | XU Yong-Fu JIANG Chao. Numerical simulations of sequestration of CO2 in the deep water of the ocean. [J]. Earth Science Frontiers, 2009, 16(2): 339-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||